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-'" Abstract

dadaptive filter W developed to estimate visually evoked fields

(EF) using visually evoked potentials (EP). These non-stationary signals are buried

in strong background noise. The two types of noise are magnetoencephalogram

(MEG) and electroencephalogram (EEG). The filter implementation is based on

the Ferrara Time Sequenced Adaptive Filter (TSAF) using the Least-Mean-Square

(LMS) algorithm and the Williams modified P-vector algorithm (mPa). This essen-

tially results in two filters, the TSAFLMs and the TSAFmpa respectivel>: A two

stage filter structure is used in which the first stage removes the time-varying mean

of the input signals. This allows the second stage to process zero-mean signals which

increases the convergence speed of the filter.

The theory for the filters is overviewed with the

input signals to the filters modelled as the sum of three uncorrelated components:

average signal response, signal jitter, and noise. The signal model is verified based

on a statistical analysis of simulated EP data files. The software implementation is

then shown to be error free' Using simulated EF and EP signals buried in correlated

noise, the TSAFmpa is shown to out perform the TSAFLMS for the specific case

presented. The TSAFmpa is unique in that the filter uses an estimate of the cross

correlation statistics of the pre-stimulus noise in the filter update equation. This

allows the TSAF,,,PA to remove the biasing affects of cross correlated noise which the

TSAFLMS can not do. The noise statistics, contained in the P vector, are assumed

to be time-invariant which is a fu.ndamental assumption used in this research.

Prior to filtering human data files, a statistical analysis performed on human

pre-stimulus noise reveals correlation between the MEG and EEG noise components

for the specific data files used. The human data is then filtered using the TSAFLMS

and TSAFmpa followed by a comparison of the output signals./

xiii



ESTIMATION OF EVOKED FIELDS UST &' :

TIME-SEQUENCED ADAPTIVE FILTER WYI ri

THE MODIFIED P-VECTOR ALGORITHM

I. Introduction

1.1 Background

The human brain generates two signals in response to visual and/or auditory

stimuli, the electrical evoked potential (EP) and the magnetic evoked field (EF).

These signals are difficult to measure as they consist of weak signals buried in strong

background noise. The two types of background noise are electroencephalogram

(EEG) and magnetoencephalogram (MEG) (15:5). In addition to the low signal to

noise ratio (SNR), the EP and EF signals are nonstationary or time-varying such

that classic Wiener filters are inadequate for processing these signals (13:1).

The EF and EP signals are used to locate the source of the response(s) to stim-

uli in the human brain. Location of the source is considered to be the most important

piece of information in biomagnetic research because the location helps researchers

understand how the brain processes information (8:9-10). The Armstrong Aerospace

Medical Research Laboratory (AAMRL) conducts research in the application of EP

and EF to source location as it applies to pilot work load assessment and developing

techniques for optimally integrating pilot and cockpit environments. One proposed

approach for assessing the suitability of cockpit designs is to quantify the brain re-

sponse of pilots to various workload sccnarios for differcnt cockpit configurations.

Quantifying the brain's response requires access to the information component of

measured electro-magnetic brain responses which is then used to localize the re-

sponse region. AAMRL collects EF and EP signals from human subjects as part of
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this on going study and desires to recover the human EF signals from low SNR data

signals collected to date. The problem encountered is the nonstationarity and low

SNR of the EF and EP signals. While this thesis is directed towards processing EF

signals, the literature on the signal processing of EF is limited compared to that on

the EP signal. Therefore, the reader is now presented a brief history of EP signal

processing keeping in mind that both EP and EF are nonstationary and corrupted

with strong background noise.

In the past, ensemble averaging has been used to enhance the SNR of the EP

signal. The maj3r drawback to this is that some of the important information content

of the signal is averaged out in the process (15:32). Westerkamp pointed out that

Wiener filters were used to process EP will little or no improvement over averaging.

This is attributed to the nonstationarity of the EP signal and the fact that Wiener

based filters, in general, require a priori knowledge of the signal statistics which are

assumed stationary (9:13). Use of adaptive filters has also been attempted with re-

sults similar to those obtained from using Wiener filters. Although a prior knowledge

of the signal statistics is not required, the adaptive filter will converge to an approx-

imation of the Wiener solution which assumes stationary signal statistics (13:5). It

has been shown that the Least-Mean-Square (LMS) adaptive filter can track signals

with slowly changing statistics by increasing the adaptation gain. The trade off is

that increasing the gain adds adaptation noise to the solution (11) (12:34). Given

the similarity of the EF and EP signals, one can expect similar results from process-

ing EF signals. With an obvious need for a filter which can process nonstationary

signals, Ferrara developed the Time Sequenced Adaptive Filter (TSAF) (2).

The Ferrara TSAF is hn extension of the LMS filter and is designed to process

a certain class of nonst.ationary signals which have statistics that repeat in time

or are cyclostationary (2:22). The TSAF requires two input signals as does the

LMS filter and thus requires two separate sensors to collect the signals. Researchers

have suggested that the EF and EP signals contain correlated information which

1-2



possibly makes the EF and EP signals good candidates for the TSAF (8:16-17) (15).

Going a step further, one might desire to use only one sensor and still process the

nonstationary signal adaptively. This is the idea behind the Williams modified P-

Vector algorithm (mPa) which essentially estimates the statistics of the pre-stimulus

noise and then removes the estimate from the weight update. This assumes the noise

has stationary statistics with the input signal allowed to be nonstationary. The mPa

requires "pre-stimulus" data which is the ongoing background noise collected before

the stimulus is applied (12:94-97). Two filter implementations are investigated in

this thesis. The TSAF using the LMS algorithm and the TSAF using the Williams

mPa. These are denoted as the TSAFLUS and TSAFmpa respectively.

1.2 Problem Statement

The objective of this thesis is to estimate EF signals using EP signals in a

direct application of the Ferrara TSAF and estimate EF signals by incorporating

the Williams Modified P-Vector Algorithm into the TSAF.

1.3 Approach

The plan of attack for this thesis includes a literature search, a statistical

analysis of simulated EP signals, a TSAFLMS and TSAt, p, filter implementation,

testing of the software, and an estimation of human EF signals. The following is a

brief overivew of the remaining chapters:

* Chapter II. This chapter presents the necessary background information to

understand the source, model, and statistical characteristics of the EP and EF

signals. In addition, the theory behind the TSAFLMS and TSAFm, a filters is

overviewed.

* Chapter III. This chapter discusses the TSAFLMS and TSAFmpa filter im-

plementations in software and presents the test that were used to verify the

1-3



integrity of the filters. This chapter also develops the concept of using EP to es-

timate EF by testing both the TSAFLIAs and TSAF,,,p, filters with simulated

EP and simulated EF signals.

* Chapter IV. With the software implementation verified, this chapter presents

the results from estimating human EF using three different filter configurations.

1. Two Sensor TSAFLMS.

2. Two Sensor TSAF, pP.

3. Single Sensor TSAFmPA.

o Chapter V. This chapter presents the conclusions from this research effort and

recommendations for future research.

1.4 Expected Results

The direct results from this thesis include a working TSAFMS and TSAFmpa

program and a report on the results from using the filters on the human EF and

human EP signals. Other expected results which are presented in Chapter 3 include

the following:

" Test data which verifies that the TSAFLMS and TSAFmpa programs are es-

sentially error free.

" Statistical characteristics of the human EEG and MEG noise.

" Comparison of the TSAFLMS and TSAFrnpa performance in terms of the mean-

square error.

1.5 Ha'dware Requiremenls

The implementation of the adaptive filter requires an AT style personal com-

puter with a 512K Ram Disk, 640K of base memory, and a single floppy drive. No

additional hardware is required.
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1.6 Software Requirements

The filter program required Borland Turbo Pascal 5.0 compiler, editor and

debugger. Statistical analysis required Mathcad and Borland Turbo Basic. The

Basic programs were used to read and write unformatted data files and perform

some recursive calculations which are not easy to implement in Mathcad.
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II. Background

2.1 Introduction

The topic of this chapter is the application of adaptive filter signal processing

to estimating the magnetic evoked fields (EF) from the human brain using human

evoked potentials (EP). The topic is developed by presenting information obtained

from a literature search of the applicable material. In addition, a statistical analysis

is presented on simulated EP signals. The key terms associated with this topic are

biomagnetism, magnetic evoked field, adaptive filter, and time sequenced adaptive

filter (TSAF).

2.1.1 Definition of Key Terms. Biomagnetism is a broad area of research that

deals with the collection and analysis of signals emanated by the human body. EF

and EP signals are a category of nonstationary biomagnetic signals that are produced

by the brain in response to visual an ,'or auditory stimuli (15:32). Adaptive filters

are a class of filters which are self adjusting in response to their input signals . In

general, the adaptive filters adjust to optimize some performance criteria (10:5). The

TSAF is an extension of the broad category of adaptive filters that is considered for

use with the EF signal (2:22). These terms are discussed further in the following

sections.

2.1.2 Scope of the Research Topic and Data Base. The area of biomagnetism

is fairly well documented and is a significant area of ongoing research. The scope of

the literature search for this thesis will be limited to EF and EP signals generated by

visual stimuli. This will reduce the general topic of biomagnetism to a manageable

area. The data base of information is contained in conference reports, technical

journals, and text books.
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Adaptive filters are widely used for signal processing and control systems. A

significant amount of literature is available on adaptive filters. However, the filter of

interest for this paper is a closed-loop adaptive filter which uses the least-mean-square

(LMS) algorithm. Using the key words LMS and closed-loop adaptive filter greatly

reduces the broad topic of adaptive filters. The main source of information for the

LMS adaptive filter is text books and technical journals. The source for the TSAF

is limited to class lectures, technical articles, and Ferrara's PhD dissertation (2) (3)

(12).

2.1.3 Method of Treatment and Organization. The following sections address

the EF and EP signals first, followed by a short discussion of adaptive filter theory.

The EF and EP literature will be overviewed to introduce the source and source

model of the EF and EP signals. In addition, a brief description of how the signals

are collected is presented as well. This is followed by an analysis of the statistical

characteristics of sirhulated EP signals. The section on the adaptive filter will high-

light major points and results of classical LMS adaptive filter theory. The theory

presented on the LMS adaptive filter will then be incorporated into the discussion

of the Ferrara TSAF and the Williams modified P-vector algorithm (mPa).
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2.2 Definition and Analysis of the EF and EP Signals

The purpose of this section is to describe how the EF and EP signals are

generated, modeled for analysis, and collected by AAMRL. This is followed by a

discussion on the statistical characteristics of simulated EP signals.

2.2.1 Source and Model of the EF and EP Signals. The EF and EP signals

are generated from the brain in response to visual and/or auditory stimuli. This

thesis is only concerned with the generation due to visual stimuli. When a nerve cell

is stimulated beyond some threshold, the ionic equilibrium of the cell is changed.

This change in the ionic state of the nerve cell generates an electric current which

propagates along the nerve to connecting nerves or tissues (14:143). For the eye, the

propagation path is along the optical nerve to the visual cortex (14:360). In order to

study and analyze this phenomena, the process is modeled as a simple dipole with

the nerve path as a thin wire from which a magnetic field is generated (14:404-405).

It is generally known that a magnetic field is generated by the flow of current

along a wire and the magnetic field forms a circular pattern around the wire. In

addition, the direction of the magnetic field is determined by the direction the current

is traveling along the wire (14:20). Thus, the EF signal is the magnetic field generated

by the flow of current along the nerve path and provides information as to the

orientation and, more importantly, the location of the source (8:9-10). The EP

signal is also generated from the dipole model and is the potential produced from

the stimulus which drives the current. Given the source and the nature of the EF

and EP signals, it is obvious that the signals are of very low power and susceptible to

noise corrupt:.,n, therefore, the collection of these signals requires special equipment.

2.2.2 Signal Collection. AAvIRL uses a Superconducting Quantum Interfer-

ence Device (SQUID) to collect the EF signals which is a non-invasive means of

recording magnetic fields generated by the brain. The SQUID uses a superconduct-

ing current loop which is extremely sensitive to changes in magnetic flux densities
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which are associated with the EF signal (15:8). The first reliable SQUID was intro-

duced in 1969 and since has been improved to allow measurements of brain activity

without special shielding to eliminate noise from overhead lighting or other sources

of urban noise (8:5). The EP signal is collected by electrodes attached to the subject

head which record the potential generated from the stimulus (15:25).

The data for this thesis was collected from a human subject who was looking

at a checkerboard pattern which was repeatedly stimulated by a burst of light. The

EF and EP data is time synchronized to the burst of light and is formatted into a

two column matrix and stored as an ASCII file on a floppy disk (15:18-20).

2.2.3 Statistical Analysis of Simulated EP Signals. This section provides a

statistical analysis of simulated EP data. The purpose is to determine specific statis-

tical characteristics of the signal which include the folluwing: stationarity, autocor-

relation, mean, and ensemble average. The analysis is based on the following signal

vector model:

X) = M13 + QJ + Nj (2.1)

AMj is the average signal response or ensemble average vector at trial j, Qj is the

deviation vector of the signal about the average response and is called the "jitter",

and N, is the human pre-stimulus noise vector. This is the signal model originally

used by Williams and provides additional insight into the performance of the adaptive

filter in terms of signal bias and correlation of the individual signal components

(13:40). This will become evident in the development of the adaptive filter theory

which follows. Two data files were used for the analysis. The first is SDAT which

contains a time indexed signal composed of the average response signal and the jitter

vectors, Mj and Qj respectively. The second file called DDAT contains the SDAT

signal with human EEG noise, Nj, added to the signal or Mj + Qj + Nj. Both data

files contained 100 vectors and each vector was composed of 50 discrete data points.

All the individual signal components were extacted and saved in separate ASCII
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files. The following sections discuss the analysis performed for M3, QJ, and Na with

a definition of the statistical formulas provided in Appendix A.

2.2.3.1 Average Response Signal, Mj. The first signal component ana-

lyzed was the M, vector which was obtained by ensemble averaging the SDAT data

file. Ensemble averaging effectively removes all the zero mean signal components,

including the jitter, f.. in the signal leaving the average response signal. M, is deter-

ministic which means it does not change with each data vector and the j subscript

could be dropped (M). Therefore, any variations in Xj from trial to trial are due to

the zero mean jitter and/or noise components. Figure 2.1 shows the plot of the en-

semble average of SDAT which produces the signal M,. The plot shows that the time

sequenced mean or ensemble average of X, is time varying and thus, by definition,

IvI is nonstationary.

2.2.3.2 Signal Jilter, Qj. The signal jitter or Q1 vector was obtained

by subtracting the Al. vector from all 100 data vectors contained in SDAT or

Qj = SDAT - Mj (2.2)

The subscript on M3 could be dropped as it is assumed to be the same for each data

vector. The first step was to determine what the Qa component of the signal looked

like. Figure 2.2 shows three of the Q data vectors plotted as a function of the time

index k (compare with Figure 2.1). The signal varied significantly among each of

the separate data vectors as can be seen from the plot. However, the signal appears

to vary symmetrically about the time axis which would indicate Q3 has a zero mean

or E[qk] = 0. The mean was calculated and the result indicates that Q3 is zero mean

(see Figure 2.3). Next, using all 100 vectors, the time sequenced ensemble mean-

square or variance of Q3 was calculated and plotted as a function of the time index k

(Figure 2.4). It is obvious from the plot that the signal's second order statistics are
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time varying. In addition, the plot shows that the initial response appears to repeat

with a smaller amplitude at the end of the plot. In order to further characterize the

jitter, the autocorrelation of the signal was calculated. This was done using Turbo-

Basic, then the 50 point vector was imported to MathCad, a math software package.

The plot of the autocorrelation function is shown in Figure 2.5. As expected, the

function is even and has its maximum value at lag r = 0. In addition, one can

observe significant correlation extending to approximately 20 data points.
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2.2.3.3 Noise, Nj. The noise component of the signal was obtained

simply by subtracting SDAT (Mj + Qj) from DDAT (Mj + Qj + Nj) which left 100

data vectors of 50 sample points each. The noise component of the signal is generally

assumed to be zero mean with second order stationarity. To validate this assumption

the ensemble average of Nj was calculated and is shown in Figure 2.6. Next, the

ensemble mean-square or variance of Nj was calculated and plotted as a function

of k (Figure 2.7). There is only a slight amount of variation in the signal variance

estimate, thus validating the assumption that the signal's second order statistics are

stationary. Thus, the noise component is wide sense stationary with zero mean.

2.2.3.4 Second Order Statistics of Xj. As stated earlier, Xj is the sum

of three separated components: signal, jitter, and noise. A quantity of interest is the

expected value of xk which is the following:

E[xk] = E[(mk + qk + nk)2]

= E[rn2 + q2 + n + 2 mkqk + 2 qknk + 2mknk]

= Etmn ] + Eq ] + E[nk]

+E[2mkqk] + E[2qknk] + E[2mknk] (2.3)

For the moment, assume the signal, jitter, and noise are uncorrelated which allows

the cross product terms to be separated into the product of their individual expected

values. Then, using the results from the previous sections that both Qj and Nj have

zero mean, the equation simplifies to the following:

E[xk] = E[m + E[q'] + E[n ] (2.4)

The assumption that the signal, jitter, and noise are uncorrelated is now ad-

dressed. If the signal components are uncorrelated, then the sum of the individual
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second order statistics will produce E[x.] which then implies the following:

E[x- (E[771] + E[q2] + E2n,]) = 0 (2.5)

To verify that indeed the signal, jitter, and noise components are uncorrelated, the

difference in Equation 2.5 was formed from using the actual data vectors, then

squared, and plotted as a function of k (see Figure 2.8). The plot indicates that

there is a slight difference between the actual ensemble average of the signal and the

summation of the individual components. However, the difference is minima! and

the initial assumption that the individual components are uncorrelated is essentially

valid.

2.2.3.5 Frequency Analysis of JM1  and Qj. In attempting to separate

the jitter and the signal, one might try to use classical digital filtering techniques

provided the frequency components did not overlap. However, a comparison of the

FFT for M, and Q3 reveals that there is significant frequency overlap between the
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signals. Figure 2.10 is the FFT of autocorrelation of M, and Figure 2.11 is the FFT

of the autocorrelation of Q3. Both data files were padded with zeros in order to

meet the length requirements of 2 N where N = 7. Using a rectangular window,

the FFT was performed on the individual data arrays using MathCad. It was also

observed that Mj contains more power in relation to Qj and there was frequency

overlap of the two signals.

2.2.4 Summary. The EF is a magnetic field generated by the flow of ionic

current along a nerve path. The source of the EF signal is modeled as a dipole which

induces the flow of current along a thin wire. The signal is of very low power and is

collected using a SQUID.

With the simulated EP signal modeled as shown in Equation 2.1, statistical

analysis revealed many interesting characteristics of the simulated data signal. First,

the average response signal, Mj, is nonstationary. Second, Qj has a zero mean

with nonstationary second order statistics and N, is wide sense stationary with zero

mean. Using the fact that Q, and N are zero mean and the signal components are

uncorrelated allowed Equation 2.3 to be simplified to

E =x'] E [mn] + E[q'] + E[n'] (2.6)

Finally, the frequency components of A, and Q3 were shown to overlap which would

not allow the use of filtering to separate the jitter and the response signal. The major

point to bring out is that the EP signal is nonstationary and can be modeled as the

sum of three uncorrelated components: the average response, jitter, and noise.
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2.3 The LMS Adaptive Filter

This section presents a brief introduction to the theory of adaptive filters fol-

lowed by a discussion of the Ferrara TSAF. The basic theory of the LMS adaptive

filter is a building block used in the discussion on the Ferrara TSAF.

2.3.1 Definition. In general, an adaptive filter is a self-adjusting and time

varying signal processor. The state of the filter is continually adjusted as a result

of the input signal(s) and in some cases the output signal (10:5-9). Figure 2.11

illustrates a closed-loop adaptive filter which is the type commonly used in signal

processing and is considered here. The input signal is xk and the desired signal is

dk. The error signal, ej., is formed from the difference of the filter output, yk, and

the desired signal. The subscript k indicates the quantities are discrete values and

k is the time index. The characteristic of a closed-loop filter is that the error signal

is passed through some "Adaptive Algorithm" and then fed back to the processor

(10:5). For this chapter, the filter theory is based on a causal filter and the commonly

used least-mean-square (LMS) algorithm.

2.3.2 Orerview of the LMS Filter. The processor of the adaptive filter is

composed of a linear combiner and delay elements as shown in Figure 2.12 and is

generally referred to as an adaptive linear combiner (10:15). The time index is k, the

value of the zero weight at time k is wok, and the size of the filter is L + 1 assuming

a causal filter. The values of the weights are contained in the weight vector which is

defined as follows:

Wk = [WOk Wlk .. WLk]T (2.7)

The weight vector gives the state of the filter at time k. The filter output signal,

Yk, will be the sum of all the delayed values of the input signal multiplied by their
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Figure 2.11. Adaptive Filter (3:9)

Figure 2.12. Adaptive Linear Combiner (3:17)
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corresponding weight or

L

Yk -EXk-lWlk
1=0

= X Wk (2.8)

where Xk [xk Xk-1 ... X:._L]T (10:17).

The final signal to define is the error signal. As stated earlier, the error signal

is the difference between the filter output and the desired signal or

Ck = dk-Yk

Sdk-- 1wTXk (2.9)

where the input signal is Xk, the desired signal is dk, and the weight vector is W.

The next step is to determine the value of Wk to optimize the performance of the

filter.

The optimum performance for the LMS adaptive filter is realized when the

mean squared error or E[d] is minimized. Ideally, the optimum performance is

achieved when E[.] = 0. However, this is seldom achievable in real applications

and sometimes not desirable as we will see in the next section. The goal now is to

determine how to express the performance of the filter mathematically and derive

an expression for the optimum weight vector, W*. Note that the k time subscript is

dropped which assumes a stationary solution. The statistic of interest is the expected

value of the squared error (the mean square error) which is defined as follows:

E[k] = E[dk +kTXkkx wk- 2dkXTkWk]

- E[dk] + E[Wk"]E[XkXk]E[Wk - 2E[dkXl']E[Wk]

= E[dk] + WTjE[XkX]Wk - 2E[dkXTiwk (2.10)
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Two significant assumptions were made to derive Equation 2.10. First, the weight

vector and the input signal vector are uncorrelated. This allows the initial equation

to be written as shown on the second line. Second, the filter has reached some point

in time where E[Wk+l - Wk] equals the zero vector. In other words, the weight

vector has converged to a solution and is treated as a constant with the k subscript

dropped. The final form of Equation 2.10 is

E[] = ,Idkl + WTRW - 2pTW (2.11)

where R is called the input autocorrel.tion toeplitz matrix and is defined as

Cx 0)€ (1) .... Oxx(--L)

1) O (0) ... O€ (!- L)

R = E[XkX T ] = €.*(2) € (-1) .... Ox.(2- L) (2.12)

qSx(L) Oxx(L - 1) ... €X(0)

and qxx(n) = E[xkxk+,]. P is the cross correlation vector and is defined as

Odx(0)]

P = E[dkXk] - d- (2.13)

dx (L) J
where Odx(n) = E[dkxk+,]. Assuming that the input signal and desired signal are sta-

tionary, R and P are constant and, therefore, they need no time subscript. However,

as it will be shown later, if the input signals are not stationary, the autocorrelation

matrix and the cross correlation vector will change with time. Equation 2.11 is the

performance equation of the LMS filter, also referred to as the mean-square error

(MSE) equation, and describes a performance surface which the filter searches to
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find the global minimum (10:20). The existence of a global minimum is guaranteed

by the characteristics of the quadratic equation. The final step is to take the gradient

of E[62.], set it equal to zero, and solve for the optimum weight vector. First, the

gradient vector, V, is defined as follows:

V F = [8F/6w o 'F/awl .... OF/1wL]T  (2.14)

where F is a function in w and V , is the gradient operator and performs the first

partial derivatives on the argument with respect to wk (6:142). Next, applying the

V,,, operator to Equation 2.11 and solving for the minimum yields the following:

0 = VL 1E[dk-] + VW Rw - Vk2PTW

= 0 + V (WT) (RW) - VW2PTW

= 2RW - 2P (2.15)

Remembering that the V, can be written as a column vector (Equation 2.14), the

result was a straight forward manipulation working the matrix equations from left

to right and then applying the Vw, operator. Solving Equation 2.15 for the optimum

weight vector, W* yields:

W* = R-1P (2.16)

It is important to note that this result assumes R is invertible (10:22). Finally,

substituting Equation 2.16 into Equation 2.11 for 14 produces the equation for the

minimum mean-square error which is the following:

= E[d ] - pT R-1 P (2.17)

Equations 2.16 and 2.17 show that the optimum weight vector depends on the

inverse of the input autocorrelation matrix and the cross correlation vector. Given

a wide sense stationary input signal., the R matrix can be calculated and will have
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constant values. The P vector is calculated by performing the cross correlation of Xk

and dk. As the correlation between the input signal and the desired signal increases,

the MSE decreases. In other words, the adaptive filter searches the performance

surface for the global minimum and in doing so maximizes the correlation between

Xk and dk (12). Figure 2.13 is an example of a quadratic performance surface. The

vertical axis is the MSE and the horizontal axis are the weight values. There are only

two weights in this example. The bottom of the bowl represents the optimum solution

as defined by Equation 2.16. If the slope of the surface was shallow, the resulting

gradient would be small and the weight vector would converge slowly towards the

optimum solution represented at the bottom of the bowl. However, if the slope of the

sides is steeper, the resulting gradient be larger and will drive the weights towards the

optimum solution faster. The main point is that the shape of the surface determines

the magnitude of the resulting gradient (12).

Another curve of interest for the LMS is the learning curve which is shown in

Figure 2.14. This shows the effect to the MSE as the filter weights change to adapt

to the input signals. Also shown is mi, which is the horizontal line on the plot ond

represents the error once the filter has reached the optimum solution as defined in

Equation 2.16 (10:51). In practice, the filter will seldom reach the ideal error because

of adaptation noise which biases the filter solution.

The critical as'-umption used throughout this development is that the input

signal is at least wide sense stationary. However, the EP signal is nonstationary.

Given the input signal is nonstationary, the performance surface and thus the mini-

mum point is now changing with time which then implies that the optimum weight

vector is also changing in time (3:519). In addition, the autocorrelation matrix and

the cross correlation vector are no longer fixed and the assumptions used in Equation

2.10 no longer apply. The next section discusses a nonstationary input to the LMS

filter in terms of the weight vector update equation.

2-19



4

Figure 2.13. Performance Surface

2.5 ME-
M 2 MEMnmm-

S 1.5 -
E 1

0.5

20 MSE

0 10 15 20 25

Time Index, k

Figure 2.14. Learning Curve for LMS Filter

2-20



2.3.3 Nonstationary Input. The filter vector for the LMS algorithm is mod-

ified using the following equation:

Wk+l = Wk + 2y kXk (2.18)

where 1t is the gain constant and is used to adjust the speed at which the filter

adapts as well as the stability of the adaptation (10:100). Equation 2.18 shows that

the next weight vector, WVk+l, depends on the present weight vector plus a scaled

estimate of the error. Therefore, p determines the proportion of the error which is

included in the update (3:520). For input signals that are slowly varying in time,

the y can be increased to allow the filter to track the non-stationarity. However, as

IL is increased the next weight vector is composed of a higher estimate of the error.

In other words, increasing y will cause the weight vector to vary around the actual

solution and in effect, add adaptation noise to the weight vector (13:34). Widrow

points out that noise generated due to the "lag" of the filter response is additive

to the noise generated by M. This "lag" noise is due to the filter trying to track a

performance surface which is changing in time (11:1151).

The point of all this is to show that an LMS adaptive filter is not designed

to process signals with rapidly varying statistics. However, the Ferrara time se-

quenced adaptive filter uses the LMS adaptive concept to process a certain class of

nonstationary signals.

2.3.4 Summary. The LMS adaptive filter searches a performance surface to

find the global minimum and thus maximizes the correlation between the input signal

and the desired signal. The optimum weight vector for a stationary signal is given by

Equation 2.16 and assumes the input signai are at least wide sense stationary. The

adaptive filter performance is degraded if the input signals statistics change rapidly

with time and may not converge to a fixed optimum weight vector. Therefore, use

of the Ferrara TSAF is considered and is the topic of the next section.
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2.4 Ferrara Time Sequenced Adaptive Filter

This section defines the TSAF and overviews the theory based on the LMS

theory presented in the previous section. A good deal of time will be spent developing

the optimum weight solution for the TSAF as part of this thesis is a direct application

of the TSAF.

2.4.1 Definition. The Ferrara TSAF is an adaptive filter designed to process

nonstationary signals which have statistics which repeat in time or are cyclostation-

ary (2:2i-22). The advantage of a TSAF is that it "...allows the weight vector to

change freely in time in order to accommodate rapid changes in the statistics of a

certain class of nonstationary signals, while allowing slow precise adaptation" (2:22).

The input signal for the TSAF is required to have a finite set of statistics that re-

peat in time (2:22). The importance of this requirement will become evident in the

following discussions.

2.4.2 Overview of the TSAF. The TSAF can be viewed as a bank of time

multiplexed JMS adaptive filters in parallel with only one filter active at a time

(Figure 2.15). Given that the input signal's statistics repeat, the signal is assumed

to have a finite set of performance surfaces between repetitions. In addition, the

performance surfaces repeat following the same sequence during each repetition in-

terval. The TSAF is set up such that the filter sequences through the individual

performance surfaces at the start of each repetition (2:22-24). For the EP and EF

signals, the start of the repetition is the index time associated with the visual stim-

uli. Each EF sample has 50 data points and therefore the filter will initially have 50

separate performance surfaces and 50 separate optimum weight vectors.

We are now ready to modify the equations presented for the LMS adaptive filter

to account for the TSAF. Equation 2.16 was valid for a wide sense stationary signal

and produced a single optimum weight vector for the single performance surface.

Now there are multiple performance surfaces and multiple input autocorrelation
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Figure 2.15. Time Sequenced Adaptive Filter

matrices and cross coirelation vectors. The result is that there will be multiple

optimum weight vectors. Thus, the optimum weight vector for the TSAF is defined

as follows:

Wg = R. 1 Pk (2.19)

The k index shows the effect of the time sequence on Equation 2.16 (2:27). This

result is not surprising if the TSAF is viewed as a bank of LMS adaptive filters in

parallel with only one filter active for each point in time or for each value of k. For

this thesis, each cf the 50 data points will have a corresponding weight vector which

is updated as the filter moves "across" the data ensemble. It is now obvious that if

the set of performance surfaces was not finite (i.e. the statistics do not repeat), the

filter would have an infinite number of optimum weight vectors and would not be

realizable.

2.4.3 Optimum Augmented Solution. The development of the optimum weight

vector solution up to this point has assumed that the input signal does not have a

bias. This may not be true in general and for the EP signal is indeed not the case.
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Figure 2.16. TSAF Filter With Bias Weight

It is now appropriate to present the .1me sequenced optimum weight vector solution

with a timne-scquenced bias weight present to compensate for the time-sequenced

non-zero mean of the input signal. The notation will follow that used by Williams

in his development of the optimum weight vector (13).

Figure 2.16 shows the filter with the time-sequenced bias weight added. The

error signal is still formed from the difference of the desired signal and a new output

signal, Yaug,k, which includes the bias weight and the filter output yk. The augmented

output signal is defined as

Yaug,k " Wb,k + Yk

= Wb,k + WkTXk

= Wag,k Xaug,k (2.20)
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where

Xag,k = [1 XkIT 2.21)

W,,,g,k = [Wb,k V/JT (2.22)

The augmented vectors in Equations 2.21 and 2.22 include the unity input to the

bias weight and the value of the bias weight at time k (13:39).

Now that the augmented input and weight vectors have been derived, the next

step is to determine the form of the optimum weight vector solution. Equation 2.19

is still the form of the solution. However, a new autocorrelation matrix and cross

correlation vector must be defined. The augmented autocorrelation matrix Ra,,g,k is

defined as

Raug,k =E[Xau9 ,k XgkI (2.23)

Then using Equation 2.21 and substituting directly into Equation 2.23, the matrix

is now written as

Raugk [E[] ] (2.24)
R = [XkI E[Xk XT]

Recall that the input signal can be modelled as the sum of three independent com-

ponents: the average signal response, the jitter, and the pre-stimulus noise. Then

E[Xk] = Mk where Mk is the average signal response as defined in Section 2.2.3.

Using this and Equation 2.12 the final form of augmented autocorrelation matrix is

1 MkTR [1,Mk = (2.25)

Mk Rk

The final hurdle is to define the new cross correlation matrix. This is fairly straight

forward as shown in the following:

Pau9,k = E[dkXg,k]T
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= E[dk[1 Xkj]T

= [nd,k E[dkXk]]T

= [md,k Pk]T (2.26)

Equation 2.21 was directly substituted into the second line with E[dk] = md,k used

in the third line. Putting it all together, the optimum weight vector solution,which

includes the bias weight, is

.1 M 1 md,k 1"
aug,k = lk Rk Pk (2.27)

The time index k is present to remind us that the optimum solution is time varying.

Both Williams and Ferrara further reduce Equation 2.27 to gain additional insight

into the effect of the bias weight on the optimum solution and how it removes the

input signal mean (2) (13). The derivation is provided in Appendix B with only the

results presented here. By performing the vector multiplication in Equation 2.27

and performing some algebraic manipulation, the optimum weight vector solution

can be written as follows:

W..= ] =b, md,k - MkTVQd,k (2.28)
Wk IF lQd,k I

where Fk = E[(Qk + Nk)(Qk + Nk)T] and is the autocorrelation matrix of the zero

mean signal. Qd,k = E[qd,kQk] and is the expected value of the correlated signal

components of the input signal and the desired signal. In looking at Equation 2.28

the bias weight has removed the mean component of the input signal scaled by

F,1 Qd,k. The output must be corrected to reflect the incorrect alteration made to

the input signal. This correction is taken care of by the bias weight adding on an

estimate of the correct mean, md,k (2:49). Another way to see this is to look at the

output of the filter in terms of the optimum weight solution.
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The filter output signal, , can be written in terms of the optimum filter

solution or

Yaugk = Wb,k + Yk

= Wb,k + 41'Vk

= md,k - MkF[ Qd,k + X1 F,71 Qd,k

- md,k + (Xk - MT)F;lQd,k (2.29)

The filter output equation "...suggest that the filter taps generate an estimate of

both the mean and the correlated stochastic components of the desired signal while

the bias weight removes the mean estimate generated by the filter taps and replaces

it with the correct mean estimate"(13:52).

Ferrara further points out that the input signal mean also shows up in the

minimum mean-square error and will increase the MSE of the filter if not removed.

This is especially true if the power of the mean component is high relative to the

other signal components (2:50). Therefor, if an input signal has a non-zero mean,

the bias must be included to reduce the error term generated by the filter. In other

words, the signal bias will offset the performance surface of the filter and the bias

weight will shift the surface to the desired position.

2.4.4 Summary. The Ferrara TSAF can be viewed as a bank of LMS filters

time multiplexed and in parallel with only one filter active at a time. The other key

point made in this section is that if an input signal has a bias, the bias will shift

the solution away from the desired optimum. In addition, the filter configuration

proposed by Ferrara with the bias weight added to the output of the filter was

analyzed with a presentation of the optimum weight vector solution in terms of the

bias weight and the Williams signal model.
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2.5 Chapter' Summary

Several major points presented in this chapter are summarized before proceed-

ing to the next chapter. The EF and EP signals are a class of nonstationary signals

produced by the brain in response to auditory and/or visual stimuli. The EF signal

is modeled as a magnetic field generated by the flow of current along a thin wire and

is detected using a special device called a SQUID. The EP signal is the change in

potential due to the visual stimuli. This signal has been studied in great detail and,

for the purposes of this thesis, has been modeled as the sum of three uncorrelated

components: average signal response, signal jitter, and noise. This thesis considers

the application adaptive filter theory to the processing of these nonstationary signals

which are buried in strong background noise.

The brief discussion presented on adaptive filters revealed that while the LMS

filter can adapt to signals with slowly changing statistics, the classical LMS filter

is not designed to handle signals with rapidly changing statistics as increasing the

speed of the adaptation adds noise to the solution. This warrants exploring the

use the Ferrara TSAF which is designed to process cylostationary signals (i.e signals

that have statistics which repeat in time). Furthermore, the EP signal has a non-zero

mean and some method must be used to compensate for the bias to reduce the MSE

of the filter and thus increase the accuracy of the optimum weight solution. Ferrara

suggests one method for removing the mean using a bias weight at the output of the

TSAF filter which is also time varying. The next chapter discusses the TSAF and

mPa algorithms along with a modified TSAF filter which removes the signal bias

before the TSAF filter.
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III. Filter Implementation and Verification

3.1 Introduction

The previous chapter presented the reasons for selecting the TSAF and the

theory behind the TSAF. The next logical steps are to implement the filter in soft-

ware and then test the program. Even after the filter implementation is verified,

the concept of estimrting human EF using human EP must somehow be validated.

Therefore, there are five major goals for this chapter which are discussed next.

1. Define the equations and algorithms implemented in software. This section is

intended to familiarize the reader with the algorithms as they are implemented

in software and present an overview of how the program is organized.

2. Test individual sub-components to ensure they are error free. The purpose of

testing individual components is to quickly isolate any problems that might

exist with the code. The algorithms tested in this section are common to both

the LMS and the mPa and are the following:

" Yk Update Algorithm.

" Bias Weight Update Algorithm.

" Filter Weight Update Algorithm.

3. Test the LMS filter to ensure it is error free. At this point the filter is fully

assembled with all the sub-components and tested with the LMS algorithm.

There are two test performed in this section. The first test uses noiseless input

signals which allows for a theoretical analysis. The second test stresses the

filter by adding noise to the input signal.

4. Test the mPa filter to ensure it is error free. The mPa has a unique input, the

P, vector, which is an estimate of the cross correlation statistics of the noise
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components. Therefore, this section first tests the P estimator and then the

mPa filter which uses the output of the estimator.

5. Validate the concept of estimating human EF using human EP. This section

uses simulated EP and simulated EF signals to test the filter in the config-

urations used in Chapter 4 for estimating the human EF. Simulated noise is

created for this section based on the cross correlation statistics of the human

EEG and human MEG and the autocorrelation of the human MEG. The use

of these simulated noise files and simulated signal files provides an elementary

model of the processing performed in Chapter 4. Therefore, this section tests

the TSAF and the concept of using the filter with human data.

Before proceeding to the filter overview, a brief section defining the notation used in

this chapter is presented next.

3.2 Notation

were us din this chapter and they are summarized below:

* j identifies a specific data vector contained in the data ensembk. For example,

Xj is the jih data vector. j ranges from 0... (M - 1) where M is the number

of data vectors in the ensemble.

" k identifies a specific sample at time k within a given vector. k ranges from

0... (N - 1) where N is the number of data points in the vector.

* aug indicates the original vector is augmented with a bias weight. See the

TSAF filter solution presented in Chapter 2.

" b indicates the variable is a bias weight.

* d indicates the variable is associated with the desired input signal.

" x indicates the variable is associated with the input signal.

" p indicates the variable is associated with the mPa and P vector.
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The TSAF uses either the LMS algorithm or the mPa as will be discussed.

To simply the notation, TSAFLMS indicates the LMS algorithm is selected and

TSAImp, indicates the mPa is selected.

3.3 TSAFLMS Filter

The TSAFLMS program performs three major functions. First, the program

tracks and updates all the weights for each filter based on the LMS algorithm. Sec-

ond, the degradation of the MSE due to the presence of a bias in the input signal

is reduced using a bias weight. To speed the convergence of the filter, a modified

TSAF filter is used with an additional bias weight preceding the TSAF. Third, the

program allows the gain constant, y, to adapt to different input signal energy levels

as will be shown.

3.3.1 TSAFLMS Filter Update Algorithm. The LMS algorithm is the build-

ing block for the time sequenced algorithm used in this thesis and is presented here

once again

Wk+l = Wk + 21iEkXk (3.1)

k is the time index, / is the gain constant, and ek is the error. The LMS algorithm

is implemented using a linear combiner and is important because it is fairly straight

forward to implement and does not require any off line processing (10:99-100). The

important point to make is that the weight update for the LMS is done over time

and thus a function of k. On the other hand, the TSAF filters are updated with the

next data vector at the same point in time as will be shown next.

To implement the TSAFMS algorithm, one simply extends the LMS algorithm

such that there are as many weight vectors as discrete data points in a single data

vector. In other words, given a data ensemble of 100 vectors each with 50 discrete

sample points, the range on k is 0 to 49 and the TSAFLMS will have a separate

filter for each value of k. Then each filter is updated with the next data vector at
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the same point in time. This means that the TSAFLMS filters are updat, " "across"

the ensemble. This differs from the LMS in that the LMS algorithm !., updated in

time or "along" the ensemble which accounts for the additional subscript "j" in the

TSAFLMS algorithm as shown in the following:

I'Vj+l,k = I'lj,k + 21t1;kXj,k (3.2)

k is the time and filter index and j is the data vector index. Again, note that the

weight vector is updated with the next data vector at the same point in time. The

next step is to add in the bias weight and rewrite Equation 3.2 using the augmented

vectors presented in the previous section. The TSAFLMs algorithm with the bias

weight is then

Waug,j+i,k = Waugj,k + 2 1-kkXaug,j,k (3.3)

Expanding this equation shows the update algorithm for the bias weight as well as

the TSAFLMS filter:

Waug, = [b = Wb,k Wb,k + 2
I1kk (3.4)Wk- Wk- Xk-

With the discussion moving towards the bias weight, it is appropriate to present the

change to the TSAFLMS filter configuration.

Recall that the purpose of the bias weight is to reduce the MSE degradation

caused by the presence of any bias in the input signal. Figure 3.1 shows a modified

TSAFLMS filter designed to remove the bias of the input signal before the filter. The

first thing to notice is that an additional time- sequenced bias weight, Wb,k, has been

added to the front of the TSAFMS filter. By using a two stage filter, the first stage

removes the bias, Mk, and the second stage then operates on the jitter and noise

components of the input signal or qk + nk (13:114-115). Williams points out that

removing the bias before the filter allows the use of a larger / for faster convergence
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as the filter does not see the additional energy contained in the mean component of

the signal (13:8).). This will be presented in more detail shortly.

dk

mk + n k+n Yk agkC

+ e'
Wlb,k

Figure 3.1. Two Stage TSAF

To remove the bias before the filter requires some knowledge of what the bias

is. This knowledge will be learned over time by the bias weight using the following

algorithm:

Wb,j+l,k = Wb,j,k + (2)(0.5) (Xj,, - Wb,j,k) (3.5)

j = 0... (M - 1) and k = ... (N - 1) where M is the number of data vectors and

N is the number of points in each vector. Equation 3.5 is simply a recursive mean

estimator and will converge to the ensemble average value for time k. An important

note is that the value of Wb,k is added back to the filter output. In addition, there

is a bias weight for each time sequenced filter and when Wbj+l,k = wb, 3,k, the bias

weight vector will equal the ensemble average given a perfect adaptation. The last

algorithm is the calculation of /.
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As stated earlier, the gain constant /s is determined adaptively for this thesis

and in general is defined as

Misadjustment M

(L + 1)(signal energy) (L + 1)(E[x2]) (3.6)

where L + 1 is the number of filter taps (13:53). The misadjustment is "...a measure

of how closely the adaptive process tracks the true Wiener solution ..." (10:110).

As was presented earlier, for larger values of M and thus larger values of I the

adaptation will have more noise in the solution with faster adaptation. For this

thesis, the misadjustment is fixed at 0.05 with the It allowed to vary as a function of

the filter size and signal energy. The reason for not fixing ji is to allow for optimum

adaptation at various signal energy levels. Looking at Equation 3.2 one can see that

if the energy of the Xjk. vector is large, it will change the resulting update vector

more than a smaller energy input vector for a fixed p. However, if it is updated with

each new input vector based on the signal energy, a stable convergence will result for

all the filters even though the each filter operates on different portions of the input

signal. The f is then updated according to the following recursive algorithm:

/'j+1 = 0.9%,j,k + 0 .05 (L + 1)(Et]) (3.7)

The k subscript indicates there is a separate p for each filter. The 0.95 essentially

adds finite memory to the update and can be decreased if a shorter memory of past

values is desired (13:53-54). The next step is to present how the TSAFMS filter is

implemented in software.

3.3.2 TSAF Software Overview. Each of the algorithms presented thus far

are implemented in separate procedures which are then called fium the diver or

main program loop. The flow of the program for the TSAFLMS is presented below:

* Initialize variables, arrays, and vectors (only once).
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* Load input signal and desired signal.

* Update the bias weight.

9 Remove bias from the input signal.

• Calculate and update M,.

o Calculate output signal, Yk.

* Add bias to Yk forming Yauq,k.

* Calculate error, ek

* Update weight vector.

* Loop if more data.

Appendix F contains the program listing with an introduction to the data size used

and general program information. In general, the filter program ran several passes

through the data ensemble to let the bias weight learn the einsemble average. The

bias weights were then frozen and the data ensemble passed through again to let the

filter weights adapt using zero mean filter inputs.

3.. TSAFmpa Filter

The Williams mPa algorithm estimates the cross correlation statistics of the

desired and filter input noise components and then removes the biasing effects during

the weight update. The advantage of the mPa is that it allows the use of a single

input signal and thus a single sensor. In this case, the input and desired signal

are the same (13). While most of the TSAF, .s filter algorithms are still valid for

the TSAFm pa, changes were required to the filter update algorithm to account for

bie use of a single input. In dddiLion, an algorithm was required to geneiate the

statistics for the noise P-vector or P,. This section first presents the -"SAFpa, filter

update algorithm which is derived in Appendix D, followed by a description of the
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P vector estimator. The final portion of this section will overview the TSAFmpa

filter implementation.

3.4.1 TSAFmpa Filter Update. The TSAFmpa filter update equation is

wj+l,k = wj,k + 2 Ak~kXj,k- 2IkPnj (3.8)

where P,j = [PO PI...PL]T' and j is the vector index and k is the time index (13:106).

The P. vector is not a function of time as the noise cross correlation statistics

are assumed to be stationary, therefore, no time index is required. The TSAFmpa

filter with the P,, estimator is shown in Figure 3.2. One thing to note is that the

TSAFmpa filter has an additional input which is the P, vector. In addition, the

input and desired signal are one in the same for the single sensor configuration. The

mk + qk + nk

Prestimulus

jEstimatorl

qYk Yaugk ++. :1TSAF +

+

17 kWb,k

Figure 3.2. TSAFmp Filter With Single Sensor
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role of the P, vector is to remove the biasing effects of the noise cross correlation

statistics from the weight update algorithm (13:97). These statistics are estimated

from the pre-stimulus noise. The algorithm for the P vector estimator will follow

shortly. The next step is to add the bias weight into Equation 3.8 resulting in the

following:

W.ug,j+l,k = wb,k + 2ykek [- (3.9)Wk Ij Xk P.

With the change incorporated into the LMS update algorithm, the algorithm to

determine the P vector is presented next.

3.4.2 P, Vector Estimator. The P estimator is an adaptive filter with the

change that each weight is updated independently of the other weights. Figure 3.3

shows a block diagram of a non-causal three tap estimator. The important point is

that the estimator must have at least as many taps as the TSAFmpa filter because

the P,, vector is directly subtracted from the weight vector. The estimator algorithm

is

P,,i,k+l = P.,j,k + (2)(0.05)(Pj,k+ - P.J,k) (3.10)

where

P.,j,k = [PO Pi...PLIT (3.11)

and each individual components of the P vector are defined as

Pi,j,k = E[nd~j,kn,j,k-i] (3.12)

nd,k is the noise associated with the desired input and n.,k is the noise associated

with the input signal. j is the vector index, k is the time index, and i = 0... (L)

and is the offset to sequence the input pre-stimulus noise component. The TSAFmpa

estimator estimates the noise cross correlation statistics using the pre-stimulus data

and passes the P vector estimate to the TSAFmpa for use with the filter update
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nk+l nk nk-1

+t rnknk+l + nknnk + nr~kk-

1k+ 1k 1--

Figure 3.3. Three Tap Non-Causal P, Vector Estimator (13:93)

equations (13:88). It is important to note that the estimator algorithm is time-

sequenced through the pre-stimulus data. However, once the estimator uses all the

pre-stimulus data points contained in the input vectors, the taps are frozen and the

resulting estimate is passed to the filter. For example, let the input data vector to

the filter contain 20 pre- stimulus data points followed by 50 response data points for

a total of 70 discrete data points. Again, there are 100 data vectors in all. The P,

estimator works on the first 20 data points and then passes the resulting P, vector

estimate to the TSAF. The TSAFmpa then uses the next 50 data points and the P

vector to update its filters.
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3.4.3 TSAFmpa Software Overview. The TSAFmpa program flow is very

similar to that of the TSAFLMS. However, there are several additional procedure

calls along with changes to existing procedures. The changes are minor and ac-

complished within the procedure by checking a flag variable. If the flag is set for

mPa, then appropriate action is taken within the algorithm execution. Now for the

overview of the main program loop which is the following:

e Initialize variables, arrays, and vectors (only once).

* Load pre-stimulus vector.

* Update P vector.

* Load input signal.

e Update the bias weight.

* Remove bias from the input signal.

9 Calculate and update /k.

* Calculate output signal, yk using mPa.

a Add bias to yk forming Yaug,k.

* Calculate error, ek

* Update weight vector.

* Loop if more data.

Again, Appendix F contains the program listing with a description of the code and

major procedures.
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3.5 Filter Verification

This section presents the major tests used to verify that the TSAF filter and

the individual components were error free. Several tests were performed to debug

the initial program and are not listed. The tests presented here are intended to

establish the integrity of the software by starting with simple test designed to check

individual algorithms and concluding with test which stress all the sub-components

of the filter. Therefore, each test builds on subsequent tests until the entire filter is

assembled. With this in mind, the tests presented in this chapter are organized as

follows:

* Testing of Individual Algorithms. These are the simplest test and are intended

to verify the performance of the individual algorithms which the TSAFLMS

and TSAFmpa filters share in common. The specific algorithms tested are the

following:

1. IAk Update

2. Bias Weight Update

3. Filter Weight Update

These test are discussed in more detail in the following sections.

* Testing of the TSAFLMS. Once the individual components are verified, the

TSAF filter using the LMS algorithm is the next level of complexity. There

are two test performed in this section.

1. TSAFLMS Test I compares experimental results against theoretical re-

sults. The input files are noiseless and only contain the jitter component.
2. TSAFLM Ts II uses h ,uman . C noise added to the noiseless input

signal of TSAFLMS Test I.

The filter performance is characterized by comparing the filter output results

from TSAFLMS Test I to those of TSAFLMS Test II.
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* Testing of the TSAF, pa. The mPa uses the P,, vector to update the filter

weights. The P, vector is generated in a separate algorithm which estimates

the cross correlation statistics of the input signals. Therefore, three tests are

performed in this section.

1. The P Estimator Test I verifies the performance of the estimator against

a single input file which is AWGNO.

2. The P Estimator Test II verifies the estimator taps converge to zero given

two uncorrelated input files are used.

3. The TSAFmpa Test ensures the mPa implementation is error free using

the output of the estimator.

3.5.1 Test Data Files. The simulated EP data files were used along with

computer generated data files to verify the TSAFLAfs and the TSAFmpa filter im-

plementations. In general, the files contained 100 data vectors with 50 discrete

sample points in each vector. The reader is referred to Appendix E for further in-

formation on the computer generated files. The data files used in this chapter are

defined below:

" AWGNO was additive white gaussian noise with zero mean and unity variance.

" AWGN1 was additive white gaussian noise with zero mean and unity variance

and uncorrelated with AWGNO.

" AWGNBIAS was AWGN with a time varying bias added.

* QDAT was derived from the simulated EP data set and contained the jitter

component, Qj.

" SDAT contained the mean and jitter components, M + Q3, from the simulated

EP data set.

" DDAT contained M, + Q3 + N. components from the simulated EP data set.
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3.5.2 Test of Individual Algorithms. This section performs the following stand

alone test of algorithms which are common to the TSAFLMS and the TSAFnmpa:

* A Update.

e Bias Weight Update.

* Filter Weight Update.

The purpose of the individual cc ponent testing is to help isolate any deficiencies

within the algorithms.

3.5.2.1 pk Update Test. This test verified the implementation of the 'k

update algorithm. This algorithm initially had problems in that a signal with zero

energy, E[x'] = 0, produced an infinite gain constant. This problem was resolved by

adding an offset of 0.01 to the calculated signal energy. The test fol this algorithm

simply consisted of passing the AWGNo file through the algorithm. Given the

simplicity of the algorithm, this was the only test performed. The algorithm was

verified by monitoring the variables during the program execution using the debug

features of Turbo Pascal and comparing the values against the calculated values. All

the calculations for two iterations were verified. The gain constant update algorithm

performed as expected.

3.5.2.2 Bias Weight Update Test. The bias weight tracks the mean of

the input signal at each point in time or for each value of k. Therefore, each of the

TSAF filters has an associated bias weight which is updated across the ensemble.

The bias weight update algorithm will drive each weight to the ensemble average of

its respective column, k, in the data ensemble. A preliminary test using AWGNBIAS

file was performed. A total of 100 separate data vectors were passed through the

filter and then the values of bias weights were compared to the ensemble average of

AWGNBIAS. There was no significant difference.
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Wlb,k

Figure 3.4. Bias Weight Test Configuration

To further test the bias update, the SDAT file was used which contained

mk + qk. The test, configuration is shown in Figure 3.4. The expected result was

that the bias weights would settle to r2k which was already calculated and discussed

in Chapter 2. The test was performed exactly as done for the AWGN file. Figure

3.5 shows the actual bias which is Mk. The error (ink - Wb,k) is shown in Figure

3.6 and is essentially zero for all the bias weights. Based on these two test, the bias

update algorithm was verified and can be assumed to work correctly.
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3.5.2.3 Weight Update Test. The previous test confirmed the imple-

mentation of the gain constant and bias weight update algorithms. These next test

use the TSAF without the bias weight update algorithm. However, the I'k update

algorithm is used to maintain a stable convergence. The following are the two test

used to verify the weight update:

e Weight Update Test I. This test used QDAT without noise for both the desired

and input signals to test the filters convergence against a theoretical solution.

o Weight Update Test II. Noise is added to the input signal to test the filters

ability to uses the correlation between the jitter components to estimate the

desired signal.

It is important to note that each test is only valid for the specific settings used in

the program initialization. Therefore, both test have a table of the filter settings.

The filter configuration for Weight Update Test I is shown in Figure 3.7. The

input signal and the desired signal are the noiseless QDAT file and the filter settings

are shown in Table 3.1. The reader is referred to Appendix C for the calculation of

the optimum filter solution when the input and desired signal are the same. The

calculation is done for both the causal and non-causal case. The test results presented

here are for the non-causal filter. Initially the filter did not converge to the theoretical

solution shown in Table 3.2. However, the weights were approaching the solution

with each pass at the data ensemble indicating the filter was moving slowly towards

the desired solution. Given the input and desired signal were both noiseless and

exactly the same signal, one would expect the filter to converge rather quickly to

the theoretical solution. We will now digress and discuss a change made to the I'k

algorithm to speed up the adaptation.

Figure 3.8 is the circuit model for the Ilk algorithm as defined in Equation 3.7.

Note that the t,[x2] term is an estimate of the signal energy which can be written as
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q ;I TSAF y

Figure 3.7. Weight Update Test I Configuration. The input signal is the jitter
component of the simulate EP data.

Parameter Setting

Number of Runs 20

Number of Taps 3

Misadjustment 0.5

Mode Non-causal

Algorithm LMS

Table 3.1. Weight Update Test I Filter Settings
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J[x?] = E[X'.] + nk (3.13)

where nk is the adaptation noise which is passed to the leaky integrator stage and

E[x.] is the true signal energy. This noise is captured by the long memory of the

integrator and corrupts future calculations of Yk. The noise present reduces the value

of the gain constant and slows the adaptation. To reduce the noise, an estimator

could be added to Figure 3.8 which more accurately estimates the signal energy

and reduces nk over time. However, a simpler approach is Figure 3.9 where the

integrator stage is dropped and the update for Uk is instantaneous without memory

of past values. Therefore, the lik1 algorithm was modified to the following:

M
tk = (L + 1)(E[.X])(Counter) (314)

The Counter is incremented at the end of the data ensemble to linearly decreases

11k as a function of the number of passes the filter makes at the data ensemble. This

allows the use of a larger M at the start to rapidly move the weights towards the

desired solution. Over time, the Counter decreases the gain constant and allows the

filter to fine tune itself. All the test presented here use this algorithm and the per-

formance of the filter improved in terms of converging to the desired solution in less

time. Table 3.3 shows the experimental results for selected filters with the instan-

taneous update of Ilk shown in Figure 3.9. The filters converged to the theoretical

solution indicating the weight update algorithm was working correctly.

3-19



Leaky Inte ,ator~

M
(L+1)E[X2]

L------------------------------- J

Figure 3.8. Circuit Model for yk Update Algorithm

M
(L+I)L[X2]

:1
Counter

Figure 3.9. Circuit Model oi Improved Ilk Update Algorithm
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Filter

Tap 5 6 20 21 34 35 47

w1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

wo 1.000 1.000 1.000 1.000 1.000 1.000 1.000

W_1  0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.2. Weight Update Test I Theoretical Solution. The weight values are for a
non-causal three tap filter.

Filter

Tap 5 6 23 24 34 35 47
w1 0.037 0.004 0.000 0.000 0.000 0.000 0.019

Wo 0.946 0.993 1.000 1.000 1.000 1.000 0.928

w-1 0.027 0.004 0.000 0.000 0.000 0.000 0.090

Table 3.3. Weight Update Test I Experimental Results. The weight values are for
a non-causal three tap filter.
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The next test is Weight Update Test II and is designed to stress the weight

update algorithm by adding noise to the input signal. The purpose is to ensure the

algorithm uses the correlation between the jitter components to estimate the desired

signal from a noisy input signal. The filter configuration is shown in Figure 3.10

with the filter settings shown in Table 3.4. The noise added to the input signal was

the human EEG noise originally used in the simulated EP data files. The filter size

was based on the autocorrelation of Q, in Figure 2.5 which shows there is significant

correlation out to k = ±7. Therefore, the filter was set with 15 taps to use the

correlation.

Figures 3.11, 3.12 and 3.13 compare the filter output to the corresponding

desired signal. The vectors selected show a worst, moderate, and best case. The

error in the filter output for each of the specified vectors is, in part, due to the

adaptation process of the algorithm. Recall that the autocorrelation matrix and

cross correlation vector are defined in terms of the expected value. This implies

that the weights converge to some average value based on the statistics of the data.

Therefore, those ;nput vectors which are closely associated with the average will

generate a more accurate output versus those vectors which are far away from the

average. However, the performance of the filter is considered acceptable and we are

ready to test the fully assembled TSAF.
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STSAF (D

Figure 3.10. Weight Update Test II Configuration

Parameter Setting

Number of Runs 20

Number of Taps 15

Misadjustment 0.5

Mode Non-causal

Algorithm LMS

Table 3.4. Weight Update Test II Filter Settings.
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Figure 3.11. Weight Update Test II Results. Comparison of Yau.9,6 and Q6
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Figure 3.12. Weight Update Test II Results. Comparison of YaLg,21 and Q21
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Figure 3.13. Weight Update Test II Results. Comparison of Yaug,24 and Q2.1
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3.5.3 TSAFLMS Test. With the ilk update, bias weight, and the weight up-

date algorithms tested and verified, the two test presented here assemble the three

sub-components and test the TSAFLMS filter. The two test performed were the

following:

* TSALMS Test I. This test is similar to the Weight Update Test I in that

the filters performance is compared against a theoretical solution. The SDAT

file which contains the jitter and mean components is used for the input and

desired signal.

* TSAFLAIS Test II. This test adds noise to the input signal to verify that the

filter removes the mean component of the input signal and then uses the cor-

relation between the jitter components to estimate the desired signal.

3.5.3.1 TSAFLMS Test I. The configuration for TSAFLAMS Test I is

shown in Figure 3.14 and the filter settings are in Table 3.5. Again, the purpose

of this test is to verify that the bias weight removes the mean component of the

input signal allowing the filter to use the jitter components of the noiseless input

and desired signal to generate an estimate of the desired signal. The expected results

from this test, Table 3.6, were exactly the same as for the Weight Update Test I.

Given the input and desired signal are the same after the bias weight removes m.,,,

the center tap should converge to unity with all other taps going to zero.

Initially soire of the TSArLMS filters were diverging from the expected results.

In analyzing the filter configuration, it was determined that when the filter initially

starts, the output of the bias weight contains a considerable amount of noise due to

the small number of samples the bias weight has used to generate an estimate of the

true signal mean. To correct this, a delay was placed on starting the TSAF filter

adaptation which gave the bias weight adaptation a "head start". The delay was set

to 20 which prevents the TSAF from starting until the presentation of vector 21 of
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Figure 3.14. TSAFLMS Test I Configuration

Parameter Setting

Number of Runs 20

Number of Taps 15

Misadjustment 0.8

Mode Non-causal

Algorithm LMS

Table 3.5. TSAFLAfs Test I Filter Settings
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the data ensemble. This delay reduced the adaptation noise passed to the filter from

the bias weight providing a stable convergence for all of the TSAF filters.

Table 3.7 shows the results from this test and indicates the filters did converge

to the desired solution with the filter performing as expected.

Filter

Tap 5 6 20 21 34 35 47

w1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

w0 1.000 1.000 1.000 1.000 1.000 1.000 1.000

w-1 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.6. TSAFLMs Test I Theoretical Solution

Filter

Tap 1 2 13 24 34 35 47

w1 0.000 0.007 0.002 0.000 0.000 0.000 0.072

Wo 0.981 0.940 0.997 1.000 1.000 1.000 0.943

w-1 0.155 0.197 0.010 0.000 0.000 0.000 0.015

Table 3.7. TSAFLMS Test I Experimental Results
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3.5.3.2 TSAFLMS Test II. The configuration for TSAFLMS Test H is

shown in Figure 3.15. The input signal was DDAT and the desired signal was SDAT.

The only difference between the two signals was the human EEG noise in the input

signal. This test ensures the bias weight removes the mean component of the input

signal allowing the TSAFLMS to use the correlation between the jitter components

in the presence of noise to generate an estimate of the desired signal. The filter

settings are shown in Table 3.8.

The results from the test are shown in Figures 3.16, 3.17,and 3.18 which com-

pares the desired noiseless signal to the filter output. Again, the outputs selected

show a worst, moderate, and best case estimation of the signal based on a visual

match. The filter output does provide a reasonable estimate of the noiseless desired

signal and indicates the filter was performing as expected.
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dk =qk + mnk

Figure 3.15. TSAFLms Test II Configuration

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

Mode Non-causal

Algorithm LMS

Table 3.8. TSAFLMS Test II Filter Settings
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3.5.4 TSAFmpa Verification. Up to this point, there have been five test per-

formcd. The first three test verified that the individual algorithms common to the

TSAFLMS and TSAF,,,Pa were operating correctly. The last two test verified the

performance of the TSAFLMs. We are now ready to verify the TSAFm Pa. The

mPa performs two major task. First, it generates an estimate of the cross correla-

tion statistics between the pre-stimulus noise of the input and desired signals and

second, the mPa removes the estimate from the weight update. Therefore, the esti-

mator must be verified as well as the mPa weight update algorithm. The following

test are performed in this section:

* P, Estimator Test. These two test are intended to show the estimator is

implemented correctly and indeed produces an estimate of the cross correlation

statistics of the noise components.

* mPa Test. This test used a computer generated noise file along with QDAT

to test the performance of the mPa using the P, vector generated from the

estimator.

3.5.4.1 P, Estimator Test. The configuration for P. Estimator Test I

is shown in Figure 3.19 where the input noise signal is also the desired noise signal.

Given the AWGNo file was created with zero mean and unity variance, the expected

results were that the center tap of the P,, vector would converge to unity with all

other taps going to zero. The expected and experimental results are shown in Table

3.9 and confirmed that the estimator performed as expected.

P,, estimator Test II used two separate files for the input and desired sig-

nals which were uncorrelated. The test configuration is shown in Figure 3.19. The

expected results from this test are that all components of the P, vector would con-

verge to zero as the files were created with no cross correlation. Table 3.10 shows

the expected and experimental results. Again, the estimator performed as expected.

Therefore, based on these test the estimator algorithm was verified.
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AWGIVo,k [p

Estimator

Figure 3.19. P,, Estimator Test I Configuration. The configuration used a 5 tap
non-causal estimator resulting in P containing 5 points.

Tap Expected Experimental

P2 0.0000 -0.0191

PI 0.0000 -0.0136

PO 1.0000 0.9990

P-I 0.0000 -0.0136

P-2 0.0000 -0.0191

Table 3.9. P, Estimator Test I Expected and Experimental Results
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AWGNI,k

Figure 3.20. P, Estimator Test II Configuration. The configuration used a 5 tap
non-causal estimator resulting in P, containing 5 points.

'Pap Expected Experimental

P2 0.0000 -0.0024

Pi 0.0000 -0.0031

PO 0.0000 0.0056

P-I 0.0000 -0.0036

P-2 0.0000 -0.0054

Table 3.10. Pn Estimator Test II Expected and Experimental Results
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3.5.4.2 '- .4F,,pa Test. With the estimator working, the next test ver-

ified that the mPa algor,. ., asing the output from the P,, estimator, was operating

correctly. The test configuration is shown in Figure 3.21. The input noise was the

NOISE.MPA file which was generated with correlation and contained 100 vectors

with 70 points in each vector (see Appendix E). The first 20 samples in each vector

provided the pre-stimulus noise. The remaining 50 samples were added to the SDAT

file to form the input signal to the filter. Given the filter is using a single sensor (i.e.

input and desired signals are the same), the resulting P, vector contains an estimate

of the autocorrelation of the pre-stimulus noise. Table 3.11 shows the filter settings

used for this test.

The results are shown in Figures 3.22, 3.23, and 3.24. The filter output does

in fact resemble the noiseless desired signal indicating the mPa removed the biasing

affects of the correlated noise. Another plot of interest is Figure 3.25 which shows the

resulting values in the P, vector indicating the estimator did detect the correlation in

the pre-stimulus noise. This final test verifies the correct operation of the TSAFm pa.
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dk

Figure 3.21. TSArmpa, Test Configuration

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

Mude Non-causal

I Algorithm j mPa

Table 3.11. TSAFmpa Test Filtei Settings
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Figure 3.22. TSArmpa Test Results. Comparison Of Y,,,,_,6 and Q6
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Figure 3.23. TSArmpa Test Results. Comparison Of Yaug,21 and Q21
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Figure 3.24. TSAFm..p, Test Results. Comparison Of Yau9,24 and Q24
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Figure 3.25. T'SAr~mPa Test Results. Plot of P,, vector.
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3.6 Validation of Concept

Up to this point, the TSAFLMS and TSAFmpa have been tested for cases where

the filter input signal was noisy while the desired signal was noiseless. However, the

test were extremely important in establishing the integrity of the filter implementa-

tion. The final test investigates the concept of using human EP to estimate human

EF signals.

Testing the concept is accomplished by testing the filter using simulated EF

signals created from the simulated EP. The creation of the simulated EF is based on

the observation that the ensemble average of the human EP appears highly correlated

with the ensemble average of the human EF signal when phase shifted 180 degrees

(15:34). An elementary approach to creating simulated EF is to first invert the EP

to mimic the 180 degree phase shift and then liner filer the signal. This is discussed

in more detail later.

The following presents a layout of this section:

" Analysis of Human EEG and MEG noise. This section performs the cross

correlation between the human MEG and EEG noise components as well as

the autocorrelation of the MEG. The purpose is to determine if there is any

cross correlation between the EEG and MEG based on a limited data set. In

addition, the results from the statistical analysis determines how the simulated

noise will be generated for the test which follow.

" Concept Test I. This test verifies the filters ability t detect the inversion and

forward modeling used to create the simulated EF data file without noise.

Using a noiseless input and noiseless desired signal allows us to predict the

weight value.; hased on the modeling used to create the simulated EF signal as

will be shown.

* Concept Test II. For this test, the TSAFMS is used with computer gencrated

noise added to the simulated EF and EP signals. The configuration for this
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test is identical to the one used in Chapter 4 and is intended to test the ability

of the TSAFLAIS filter to estimate the simulated EF signal in the presence of

noise and resolve the forward modeling use to create the simulated EF.

e Concept Test III. Now the TSAFmpa filter is used with the same data files

as in Concept Test II. The purpose of this test is to assess the ability of the

TSAFmpa filter to estimate the simulated EF signal in the presence of noise

and resolve the forward modeling. The ultimate goal is to compare the LMS

performance to the mPa when there is cross correlation between the noise

components.

o Comparison of the TSAFLMS and TSAF p, Performance. This section presents

a comparison of the performance between the different test configurations in

terms of the averaged squared error. Since these test use deterministic signals,

a direct comparison of the filter output to the noiseless desired response is

possible.

3.6.1 Analysis of Human EEG and MEG. The LMS algorithm assumes there

is no correlation between the noise components and high degree of correlation be-

tween the jitter components. Any correlation between the noise components will

cause the LMS algorithmn to converge to a biased filter solution. Therefore, before

iamping directly into testing, it is appropriate to look at the noise statistics.

Human EEG noise and MEG noise were obtain,. by extracting the pre-stimulus

noise from the human EF and EP data files provided by AAMRL. The resulting MEG

and EEG files contained 80 vectors with 20 sample points in each vector. A rectan-

gular window was used to perform the cross correlation of the MEG and EEG noise

and the autocorrelation of the MEG.

The cross correlation is shown in Figure 3.26 and indicates there is indeed cr. :s

correlation between the MEG and EEG noise components in this particular data set.

Thc autocorrelation of the MEG is in Figure 3.27 which shcws there is correlation
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within the MEG noise itself. it is important to note that this analysis only applies

to the specific data files used here and should not be extended to MEG and EEG

noise in general without future research. The significance of the cross correlation is

two fold:

* First, we expect the TSAFLMs to use the cross correlation between the noise

components to bias the weight vector solution. This bias is undesirable, but,

unavoidable if the LMS algorithm is used.

* Second, the mPa should see the cross correlation in the noise resulting in non-

zero vaiues in the P, vector. The mPa will then try to reduce the biasing

affects by removing an estimate of the cross correlation statistics in the weight

update.

Based on these observations, one might expect the TSAFp. to produce a more

accurate estimate of the EF signal over the TSAFLMS. To confirm this hypothesis,

the noise files used in Concept Test II and III were created with cross correlation

to simulate the correlation discovered between the human EEG and MEG. Before

testing with correlated noise, the basic filter configuration is tested using noiseless

signals.
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Figure 3.26. Cross Correlation of Human EEF and Human MEG. The correlation
was performed using a rectangular window.
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Figure 3.27. Autocorrelation Human MEG. The correlation was performed using a
rectangular window.
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3.6.2 Concept Test I. The purpose of this preliminary test is to start with a

noiseless input and noiseless desired signal and check the filter's ability to estimate

the simulated EF using simulated EP. The filter configuration is shown in Figure

3.28 which also shows the forward modeling used to create the simulated EF from

simulated EP. The inverter performs the 180 degree phase shift corresponding to the

observation that the ensemble average of the human EF appeared highly correlated

with the ensemble average of the human EP when phase shifted 180 degrees. The

linear filter generates a signal which is correlated with, but, not identical to the

simulated EP. Given there is no quantifiable data from which to generate a model,

the transfer function of the filter was chosen arbitrarily.

Given the input signals are both noiseless and only differ by the linear operation

of the model, the filter weights should converge to model the forward pla nt and

inverter, there by creating an estimate of the simulated EF. In other words, the

TSAFLMS must perform the same linear operations on the input signal that were

performed to create the desired signal.

It was at this point that the need for an additional bias weight was discovered.

T o reader may have noticed the additional bias weight, Wb,d,k, in Figure 3.28. In

the two sensor configuration, the mean of the input signal is not necessarily equal to

the mean of the desired signal or

*Mx,k 76 Md,k (.5

The input bias weight only estimates the mean of the input signal and is isolated

from the desired signal. Therefore, without Wb,d,k, the error signal would update the

filter weights using the following:

ek = dk - Yaug,k

- md,k "+" qd - mx,k - Yk
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= (md,k - Mx,,.) + (qd,k - wIk2Xk) (3.16)

Note the presence of the (md,k - m,,k) term which is the difference between the mean

components of input and desired signals. The error term now contains a non-zero

mean component, (md,k-mx,k), which the filter can not remove by linearly weighl iig

a zero mean input signal. Therefore, Wb,d,k was added to remove the mean component

of the desired signal and m,k is no longer added back to the filter output in the tio

sensor configuration. This allows the filter to operate on a zero mean input and

zero mean desired signal. md,k is then added back to the filter output as the bias

of the desired signal is assumed to be the bias contained in filter output. Given the

algorithm was a duplicate of the one used for the input signal, no additional testing

was required other than those presented here.

Table 3.12 shows the filter settings used for this test followed by the expected

results Table 3.13. The expected results were derived from the forward model used

to create the simulated EF. Performing the multiplication indicated by the inverter

preceding the filter, the resulting transfer function is

0.25 - Z' = 0.25Z ° - Z 2  (3.17)

The Z 2 term in Equation 3.17 represents a lag of two which corresponds to filter tap

w- 2 and the Z' term corresponds to tap Wo which is the zero lag tap. The filter

weights should converge to the coefficients of the transfer e,. ion which are the

values shown in Table 3.13. The test results are shown in Table 3.14 and indicates

the filter did indeed converge to a solution which matched the forward modeling.
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Figure 3.28. Concept Test I Filter Configuration

P~arameter Setting

Number of Runs 10

Number of Taps 5

Misadjustment 0.5

Mode Non-causal

I Algorithm LMSJ

Table 3.12. Concept Test I Filter Settings
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Tap 10 23 Fitr29 43

W02 0.000 0.000 0.000 0.000

W1 0.000 0.000 0.000 0.000

WO 0.250 0.250 0.250 0.250

W1 0.000 0.000 0.000 0.000

-1.000 -1.000 -1.000 -1.000]

Table 3.13. Concept Test I Expected Results

Filter

Tap 10 23 29 43

W2 -0.064 -0.005 -0.032 -0.097

W1 0.165 -0.012 0.045 0.184

WO 0.215 0.287 0.259 0.225

W1 -0.169 -0.038 -0.054 -0.148

W-2 -081 -0.984 -098 -0.89387

Talk 3. 14. C onc cpt ITe-st A Result



3.6.3 Concept Test II The previous test showed that the TSAFLMS was able

to resolve the forward modeling used to create the simulated EF for a noiseless input

and desired signal. Concept Test II parallels the test to be performed in Chapter 4

in that correlated noise is added to the input and desired signal as shown in Figure

3.29. Recall there was correlation in the human EEG and MEG, therefore, the noise

components used in this test were created with cross correlation. The input filter

noise file is SIM.EEG and the desired signal noise file is SIM.MEG. Appendix E

shows how these noise files were generated.

Table 3.15 shows the filter settings used for this test which also are the same

settings to be used in the following chapter. The results from the test are shown in

Figures 3.30, 3.31, and 3.32. The plots indicate the filter was generating an output

which appears, in some sections, to be offset from the noiseless desired signal. This

may be due to the correlation present in the noise components which the LMS algo-

rithm is using to update the filter weights. In effect, the LMS can not differentiate

between the jitter cross correlation and the noise cross correlation.

3-46



Er,,k + nd,k

1

WbWdk

Figure 3.29. Concept Test II Filter Configuration

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

j Algorithm t mPa j

Table 3.15. Concept Test II Filter Settings
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Figure 3.30. Concept Test Il Results. Comparison Of Y9 ,,6 and Q6r
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Figure 3.31. Concept Test HI Results. Comparison Of Yaug9,21 and Q21.
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F igure 3.32. Concept Test HI Results. Comparison Of Yau9,24 and Q24-

3-48



3.6..4 Concept Test III. The purpose of this test is to use the same input

signals as in Concept Test II with the TSAFmpa instead of the TSAFLMS. The

test configuration is shown in Figure 3.33 with the filter settings shown in Table

3.16. Again the configuration an% filter settings are identical those to be used in

Chapter 4.

The results rsm this test are shown in Figures 3.34, 3.35, and 3.36 and show a

significant improvement over those from Concept Test II which used the TSAFLAIS.

The final data piesented for this test is the P vector in Figure 3.37 which shows

that the estimator detected the cross correlation present in the pre-stimulus noise.

One expects that the TSAFm .pa used the P,, vector to reduce the biasing effects of

the correlation in the filter solution.
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Figure 3.33. Concept Test III Filter Configuration

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

Mode Non-causal

Algorithm mPa

Table 3.16. Concept Test III Filter Settings
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Figure 3.34. Concept Test III Results. Comparison of Yaug,6 and Q6
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Figure 3.35. Concept Test III Results. Comparison of Yaug,21 and Q21.
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Figure 3.36. Concept Test III Results. Comparison of Yaug,24 and Q24.
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Figure 3.37. Concept Test III Results: P, Vector which contains an estimate of the
cross correlation statistics of the pre-stimulus noise.
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3.6.5 Comparison of the TSAFLMS and TSAFrpa Performance. While the

filter output from Concept Test III appeared better than the output from Concept

Test II, only three of the 80 vectors were displayed. Therefore, the purpose of this

section is to quantify the error of all the test used in this section. The figure of merit

for a relative comparison between the test is the difference between the filter output,

yag,k, and the noiseless desired signal. The error is then squared and averaged over

all the data points and vectors. The error for each filter configuration is then defined

as the following:
1 M-I N-1

M Z Z (SDAT,k - Yaug,j,k) (3.18)
j=O k=O

where M is the number of data vectors, N is the number of data points in each

vector, j is vector index, and k is the time index. Equation 3.18 results is a single

number representing an average square error between the noiseless desired signal and

the filter output. This calculation is only possible because we used simulated data

and, therefore, have a priori knowledge of the true signal component.

For comparison purposes, an additional test was performed with the TSAF, npa

using a single senor. The filter configuration was identical to that used in Concept

Test III in Figure 3.33 except that both the input and desired signals were the

simulated EF buried in the simulated MEG. The filter settings were also the same

(see Table 3.16). This test is referred to as Concept Test IV.

The results from the calculation are shown in Table 3.17 It is interesting to

note that the TSAFLMS did in fact have an average error which was higher than the

TSAIm pa. This indicates that the TSAF,Ms used the correlation between the noise

components to update the weight vector. This resulted in a biased weight vector.

On the other hand, the two sensor TSAFmpa appeared to use the cross correlation

to generate an estimate of the noise statistics and remove the biasing affects. It

is interesting to note that the single sensor TSAIRnpa performed better than the

two sensor TSAFLMs as well. The average error for Concept Test I is included to
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confirm that the filter could resolve the forward modeling for the noiseless signals

almost perfectly.

Filter Error (puV) 2

Two Sensor TSAFLMjS: Concept Test II 7.837

Single Sensor TSAFm p,: Concept Test IV 4.023

Two Sensor TSAFm pa: Concept Test III 2.439

Two Sensor TSAFLMS: Concept Test I 0.002

Table 3.17. Comparison of the Average Square Error
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3.7 Chapter Summary.

The ultimate goal of this chapter was to test the TSAF in the configurations

to be used in Chapter 4 to verify the filter's integrity and validate the concept

of estimating human EF with the TSAF. A significant portion of the testing was

designed to isolate problems within specific algorithm and/or in the interaction of

the sub-components. There were several changes made to the software code to

enhance the filter performance. The following presents a summary of these changes:

" 1'k Update Algorithm. This algorithm was modified to use an instantaneous

estimate of the signal energy present at the input of the filter. The original

algorithm did not perform as well due to the noise present in the estimate of

the signal energy. The noise was captured by the long memory of the leaky

integrator which then corrupted future updates of the gain constant.

" Filter Delay. A delay was added to the TSAF adaptation to give the bias

weight a "head start". This delay reduced the adaptation noise which the bias

weight passed to the filter by allowing the bias weight to use the first 20 vectors

before the TSAF was started.

" Additional Bias Weight. An additional bias weight was added to remove the

mean component of the desired signal. This was necessary because the two

stage TSAF removes the input signal mean at the front of the filter and is

isolated from the desired signal. The bias weights provide a zero mean input

and zero mean desired signal to the tw- stage TSAF.

To validate the concept of using the TSAF with human signals, a series of test

were performed to simulate the fiuter configurations to be used in Chapter 4. In

addition, simulated EF and EP signals were used with computer generated noise.

The computer generated noise was created with cross correlation to simulate the cross

correlation discovered between the human EEG and human MEG noise components.

The results from Concept Test II and III confirmed the hypothesis that the TSAFmpa
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would generate a more accurate estimate of the desired signal over the TSAFLMS

when there is cross correlation between the noise components. It is also interesting

to note that the single sensor TSAFnpa had a better average square error than the

two sensor TSAFLMS for the specific tests performed in this Chapter.

In summary, the test performed in this chapter were intended to build confi-

dence in the implementation of the TSAFmpa and TSAFLMS filters. Based on the

test performed and the results obtained, the TSAFLMS and the TSAFmp. filters

were shown to perform as expected with no errors detected in the algorithms. Fi-

nally, the concept of estimating human EF using human EP was validated based on

the results obtained from using simulated data.
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IV. Estimation of Human EF

4. 1 Introduction

This chapter summarizes the application of the TSAFmpa and the TSAFLMs

filters in estimating human EF. Extensive testing was performed in Chapter 3 to

verify that both filters are indeed error free since no standards exist to compare to

the filtered human data. In addition, the TSAFLMS and TSAFmpa were tested in

configurations identical to the those used in this chapter. By modeling simulated

EF using simulated EP, the concept of using EP to estimate EF was validated.

A significant result from the analysis of human EEG and human MEG was that

cross correlation was discovered between the noise components for the limited data

set. The data used for the analysis is the same data used in this chapter. Based on

the results in Chapter 3, one might expect the TSAFmpa to provide a more accurate

estimate of the human EF signal. With this in mind, the following is a brief overview

of the experiments p.rformed in this chapter:

" Two Sensor TS, FLMS Estimation of Human EF. This experiment uses two

sensors to estimate the EF which is equivalent to saying the filter uses two

separate input signals. The filter input signal is human EP and EEG contaired

in the data file EEG.PRN. The desired signal is the human EF and MEG

contained in the data file MEG.PRN.

* Two Sensor TSAFmpa Estimation of Human EF. Again, this experiment uses

two sensors, but, the mPa is used to estimate the EF signal. The filter input

file is EEG.PRN and the desired signal is MEG.PRN.

" Single Sensor TSAFmpa Estimation of Human EF. The mPa is now used with

one input file which is the human EF and MEG. The filter input signal is also

the desired signal.
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Finally, there are two significant assumptions on which the processing in this

chapter is based:

1. The statistics of the human EEG and MEG noise are stationary. This means

that P, vector need not be time-sequenced. Recall that the estimator generates

the P,, vector based on the statistics of pre-stimulus noise. The resulting Pn

vector is then used for all the TSAF filters and is not updated until the next

data vector. Therefore, non-stationary noise statistics could degrade the filters

performance.

2. There exists correlation between the human EP and EF jitter components.

This assumption drives the experiments presented in this chapter in that the

correlation between the Qj components is what the filter uses to update the

weights. Ideally, one would like signals with highly correlated jitter components

and very little or no cross correlation between the noise components.

4.2. Data Files

There were two data files used in this chapter that were obtained from AAMRL.

The MEG.PRN file contained human EF and MEG components and consisted of 80

vectors with 100 discrete sample points in each. Individual vectois contained 0.5

seconds of collection with the first 0.1 seconds being pre-stimulus noise. The sample

rate was 200 kHz which means the first 20 sample points were pre-stimulus and the

last 80 were post-stimulus. The pre-stimulus was noise only and the post-stimulus

contained noise and signal. The EEG.PRN file was in the -e format and contained

the human EP and EEG.

In keeping with the signal model presented in Chapter 2, the MEG.PRN file

is written as EFj + MEGj = Qd,j + Md,j + NdJ where the noise component is MEG

and the EF signal component is composed of the jitter and mean. The same model

is used for the EEG.PRN data file or EPj + EEGj = Q.,j + Mij + N,,j. This is the
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notation used to represent ,he files in the experiment configurations. The x subscript

denotes a filter input and the d subscript a desired signal.

4.3 Two Sensor TSAFMS Estimation Human EF

This experiment estimates the EF signal using the MEG.PRN file as the desired

signal and EEG.PRN as the input signal to the TSAFLMS. With the LMS algorithm

selected, the cross correlation in the MEG and EEG noise components is expected

to bias the weight solution as was shown in Chapter 3.

4.3.1 Configuration. The filter configuration is shown in Figure 4.1 with the

filter parameters in Table 4.1. The filter configuration in Figure 4.1 is identical to

the one used in Concept Test II. Again, the number of taps was based on the filter

size used in Chapter 3 to estimate the simulated EP signal buried in human EEG

noise. The autocorrelation of the simulate EP signal component showed significant

correlation out to k = ±'7. Therefore, the number of taps was set to 15 and the

number of runs was 10. The number of runs was based on experienced gained from

using the filter and monitoring the instantaneous MSE. For all previous test cases,

the filter converged to a solution in less than 10 runs. The filter is said to have

converged if the MSE did not appreciably decrease with additional passe' through

the data ensemble.

4.3.2 Results. The result from this experiment was an output file, YOUT-

EXP1.PRN, which contained 80 vectors with 80 discrete points in each. Each of

the output vectors represented an estimate of the corresponding desired vector. Six

of the output vectors were plotted along with the ensemble average of MEG.PRN

in Figures 4.2 through 4.7. The underlying signal component of the human data is

not known, therefore, the ensemble average of the MEG.PRN file is provided as a

reference to show the deviation of the individual output vectors about the ensemble

average. The correspondiig input vector is shown as well.

4-3



EFk + MEGk

Wb,d,k

EPk + EEGk /

Wbx,k

Figure 4.1. Two Sensor TSAFLMS Filter Configuration

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

Mode Non-causal

Algorithm LMS

Table 4.1. Two Sensor TSAFLMs Filter Settings.
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Figure 4.8 compares the ensemble average of the desired signal, E[dkl, to that of

the filtered output signal, E[yaug,k]. The plots are identical which might be surprising

at first. However, recall that the two stage filter removes the mean component of

the input signal allowing the TSAF to operate on the zero-mean jitter and noise

components. Williams points at that "...filtering a zero mean process produces a

zero-mean output..."(13:114). The filter output, yk, is then initially zero-mean until

Wd,k is added to Yk forming the output signal Yauq,k. Therefore, the ensemble average

of the filter output should equal the ensemble average of the desired signal. Now the

filter output signal contains the estimate of the mean component of the desired signal

in addition to the filter's estimate of the jitter component. The next experiment

uses the mPa to remove the biasing affects of any correlation that might be present

between the noise components.

While a qualitative assessment is not possible as we are working with human

data, observe in Figure 4.2 that the concept appears to be working in the time

interval k = 15... 25. That is to say, the filter output is inverted as compared to the

corresponding filter input which agrees with the signal model used in Chapter 3 for

the simulated EF.
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Figure 4.2. Two Sensor TSAFLAIS Results: Post-stimulus output vector yaug,10
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Figure 4.3. Two Sensor TSAFLMS Results: Post-stimulus output vector yag,15.
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Figure 4.4. Two Sensor TSAFLMS Results: Post-stimulus output vector Yaug,31.
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Figure 4.5. Two Sensor TSAFLMS Results: Post-stimulus output vector Yaug,45.
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Figure 4.6. Two Sensor TSAFLMS Results: Post-stimulus output vector Ya9g,62.
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Figure 4.7. Two Sensor TSAFLMS Results: Post-stimulus output vector Ya,,g,70.
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Figure 4.8. Two Sensor TSAFLMS Results: Ensemble Averages of YOUT-
EXP1.PRN and MEG.PRN
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4.4 Two Sensor TSAF, pa Estimation of Human EF.

This experiment estimates the EF signal component using the TSAF filter in

the mPa mode. Based on the test performed in Chapter 3, if there is correlation

between the MEG and EEG, the P, vector will have non-zero components. The

assumption is that the noise is stationary which means the P, vector is time invariant.

4.4.1 Configuration. Figure 4.9 shows the configuration of the filter which

is the same as the previous test except now the mPa algorithm is selected. The

P,, vector contains the estimate of the cross correlation statistics of the MEG and

EEG noise and is passed to the TSAFm pa. The estimate is generated from the 20

pre-stimulus data points contained in each data vector.

4.4.2 Results. This experiment produced an output data file, YOUTEXP2.PRN,

which contained 80 vectors with 80 discrete points. The output file was the estimate

of the EF signal contained in the MEG.PRN. As in the previous experiment, each

output vector represents an estimate of the corresponding desired signal vector. Fig-

ures 4.10 through 4.15 show the same six vectors as used on Experiment I along with

the ensemble average of the MEG.PRN file. Figure 4.16 compares the ensemble av-

erage of the filter output file to the ensemble average of MEG.PRN to ensure the

filter was not adversely altering the signal. As in the previous experiment, the two

plots are identical.

Another interesting plot is Figure 4.17 which shows the values of the P, vector

at the end of the experiment. It appears that the estimator has detected cross

correlation between the MEG and the EEG noise components which agrees with the

findings in Chapter 3.
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EFk + MEGk 1

G >tEstimator

Wbb~d~k

Figure 4.9. Two Sensor TSAF,,pa Filter Configuration

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

Mode Non-causal

I Algorithm ] mPa

Table 4.2. Two Sensor TSAFnpa Filter Settings
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Figure 4.10. Two Sensor TSAF,,p, Results: Post-stimulus output vector Yaug,10
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Figure 4.11. Two Sensor TSAFmpa Results: Post-stimulus output vector Yau9,15.
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Figure 4.12. Two Sensor TSAFmpa Results: Post-stimulus output vector Y,,.9,31-
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Figure 4.13. Two Sensor TSArmpa Results: Post-stimulus output vector Ya.,5
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Figure 4.14. Two Sensor TSA.Pmpa, Results: Post-stimulus output vector Yaug,62-
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Figure 4.15. Two Sensor TSAF,,&pa Results: Post-stimulus output vector yau9,70-
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Figure 4.16. Two Sensor TSAFmpG Results: Ensemble Averages of YOUT-

EXP2.PRN and MEG.PRN.
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Figure 4.17. Two Sensor TSArmp, Results: P,, Vector
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Finally, before proceeding to the single sensor TSAF, pa, six plo's follow which

compare the TSAFLMs filter output to the TSAFrpa from the prcvious two exper-

iments. Clearly the two approaches provide different outputs reflecting the contri-

bution of the Pn vector to the estimate of the EF signal in the TSAFm p. The

conjecture that the TSAFmpa results are better is only justified based on the simu-

lation results of Chapter 3.
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Figure 4.18. Comparison of YaU9,lo: Post-stimulus output vector from twvo sensor
TSAF LAf s and TSAF,,IPa experiments

200

150 Srm

100

50

fsV 0

-50

-100

-150

0 10 20 30 40 50 60 70
Time Index, k

Figure 4,19, Comparison of yauo_,1,5: Post-stimulus output vector from two sensor
TSAFluis and TSAFnpo experiments.
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Figure 4.20. Comparison of Yaug,31: Post-stimulus output vector from two sensor
TSAFLMS and TSAtmpa experiments.
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Figure 4.21. Comparison of yaug,45: Post-stimulus output vector from lwo sensor
TSAFLAfs and TSAFpa experiments.
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Figure 4.22. Comparison Of Yau.9,62: Post-stimulus output vector from two sensor
TSAFLMS and TSARmPa experiments.
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Figure 4.23. Comparison Of Yaug,7o: Post-stimulus output vector from two sensor
TSAFLMS and TSArmPa experiments.
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4.5 Single Sensor TSAFmpa Estimation of Human EF

This final experiment uses the TSAFmpa with a single sensor with the human

EF data for the input and desired signals. Again, this experiment assumes that the

noise statistics are time invariant.

4.5.1 Configuration. The filter configuration is shown in Figure 4.24. The

P,, vector now estimates the cross correlation statistics of the MEG noise with itself

and then removes the estimate in the weight update algorithm. The filter settings

are shown in Table 4.3 and the results are presented in the following section.

4.5.2 Results. The results from this experiment was an output file, YOU-

TEXP3.PRN which contained 80 vectors with 80 discrete points in each and was

an estimate of the EF signal component. Six output vectors are shown in Figures

4.25 through 4.30. The ensemble average is plotted to provide a reference along

with the input signal used to generate the filter output. As ,done previously, the

ensemble average of the YOUTEXP3.PRN file is compared to the ensemble average

of MEG.PRN in Figure ' 31 and the plots were identical. The last piece of data for

this experiment is a plot of the P,, vector shown in Figure 4.32 which is very similar

to the plot of the autocorrelation of the MEG noise in Figure 3.27. This is expected

as the P, vector represents an estimate of the cross correlation of the MEG noise

with itself in the single sensor case.

The plots of the filter output show that the filter was amplifying the input sig-

nal. This amplificaticn is undesirable and indicates the filter solution was incorrect.

The power of the output signal should have been lower as the filter tries to reduce

the effects of the noise contained in the input signal. The next section analyzes the

single sensor configuration in terms of the P,, vector.
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1+

+ Yaug,k

Figure 4.24. Single Sensor TSAF,pa Filter Configuration

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

Mode Non-causal

Algorithm mPa

Table 4.3. Single Sensor TSAF,,,pa Filter Settings.
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Figure 4.25. Single Sensor TSAFmp, Results: Post-stimulus output vector Yaug,1o.
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Figure 4.26. Single Sensor TSAFmpa Results: Post-stimulus output vector Yaug,15.
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Figure 4.27. Single Sensor TSArmpa Results: Post-stimulus output vector Yaug,31-

200

150 Filt Ou ut150 -E dk]-
I put Signal

100

50

IV 0

-50

-100

-150Vi

0 10 20 30 40 50 60 70
Time Index, k

Figure 4.28. Single Sensor TSArmpa Results: Post-stimulus output vector YaugA,5.
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Figure 4.29. Single Sensor TSAFmp, Results: Post-stimulus output vector yaug,62.
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Figure 4.30. Single Sensor TSAF, pa Results: Post-stimulus output vector Yaug,70.
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Figure 4.31. Single Sensor TSAFmpa Results: Ensemble Average of YOUT-
EXP4.PRN and MEG.PRN
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Figure 4.32. Single Sensor TSAFmpa Results: P, Vector
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4.6 Analysis of Single Sensor TSAFmpa Performance

The previous experiment used the single sensor TSAFmpa to estimate human

EF signals. The results indicated that the filter was actually amplifying th' input

signal. This amplification is undesirable as the filter should be reducing the noise

power contained in the input signal. This section investigates the performance of

the single sensor TSAFmpa in estimating the human EF.

4.6.1 P, Estimator Revisited. In analyzing the output from the Pn estimator,

it was noted that the plot of the P,, vector for the single sensor TSAFmpa experiment

was similar, but, not identical to that predicted by the autocorrelation of the human

MEG noise performed in Chapter 3. Figure 4.33 compares the P, vector components

to the results from the statistical calculation. Note that the P values increase

compared to the calculated values as one moves away from the zero tap. The other

point to make is that the Pn vector is non-causal with 15 taps and only has values

out to ±7. One might expect the two plots to be identical where they overlap as

both are the autocorrelation of the human MEG pre-stimulus noise. The difference

is attributed to the "windowing" of the data in the statistical analysis as shown next.

The equation used to calculate the cross correlation statistics is the following:

1 dj, Xj,k-i (4.1)
- = 0=j 0=k

j is the vector pointer, M is the number of vectors contained in the ensemble, k is

the time index, N is the number of data points in each vector, and i is the shift

index and ranges from 0... (2N - 1). The equation form of the P, estimator is as

follows:
M-1 N-1

Pk = M(N - i) E dj,kxj,k-i (4.2)

The N term in Equation 4.1 windows the data vectors. This is best seen when the

shift index is at its maximum value i = 2N - 1 and only a single term results from
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Figure 4.33. Comparison of P, and Autocorrelation of Human MEG noise

the summation over k as all other values are zero. However, this single term is still

divided by N which is the number of data points in the vector.

On the other hand, Equation 4.2 divides the summation over k using the

term which results in division by the number of terms which overlap. For the

same case previously considered where i = 2N - 1, the single non-zero term in the

summation over k is divided by N - i or 1. Therefore, the P, estimator equally

weights each estimate even though fewer terms are used in the summation. The

question then arises as to which equation produces better result in terms of filter

performance for the special case investigated in this thesis. The answer was obtained

by re-testing the single sensor TSAF,.p. with high variance noise added to in the

simulated EF data to determine the affects to the filter performance.

4.6.2 TSAF,,p, Performance. This section presents two additional test of

the single sensor TSAFmpa. The test were designed to determine if windowing

the data vectors improved the filter performance over using the existing estimator
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algorithm. The figure of merit is the average square error using Equation 2.10 from

Chapter 3. A new noise file, NOISE2.PRN, was generated as shown in Appendix E.

The noise was generated with correlation and high variance as compared to computer

generated noise files previously used. The reason for increasing the variance was to

more accurately represent the SNR of the human data.

The configuration for boti test is shown in Figure 4.34 with the filter settings

shown in Table 4.4. These were identical to those used in the estimation of human

EF. The MSE results from the test are shown in Table 4.5 and clearly indicate the
"window" algorithm had a lower MSE performance than the original estimator. A

plot of the resulting P,, vectors is shown in Figure 4.35 and indicates the statistical

algorithm matched the calculated autocorrelation of the pre- stimulus noise exactly,

where they overlap, while the original algorithm was slightly higher. Output vectors

generated from using the different algorithms are plotted, along with the input signal,

in Figures 4.36 and 4.37.
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EFk + nd,k

Pre-stimulus+

Estimator
P. " Wb,d,k

++

Yaug,k

t Wbxk

1

Figure 4.34. P, Estimator Re-test Filter Configuration. The input is simulated EF
with high variance noise, nd,k.

Parameter Setting

Number of Runs 10

Number of Taps 15

Misadjustment 0.5

Mode Non-causal

Algorithm mPa

Table 4.4. P Estimator Re-test Filter Settings
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Estimator Algorithm Average Square Erior (uV) 2

Estimator Algorithm (-?) 1145

Statistical Algorithm (1) 779

Table 4.5. P, Estimator Re-test Results

900

800 - Calculated -
Estimator Algorithm

700 - Statistical Algorithm -

600 -

500.
(,LV) 2

400 -

300

200

100

0
-15 -10 -5 0 5 10 15

Time Index, k

Figure 4.35. P,, Estimator Re-test Results: Comparison of the P,, vectors and cal-
culated autocorrelation of the pre-stimulus noise.
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Figure 4.36. P,, Estimator Re-test Results: Output Vector YaU9,6

100 I

Original-
Statistical-

jzV 0

-50

0 5 10 15 20 25 30 35 40 45[ Time Index, k

Figure 4.37. P,, Estimator Re-test Results: Output Vector Yaug,21
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4.6.3 Discussion. Based on this limited analysis, windowing improved the

single sensor TSAF,,,p performance using the simulated EF data with high variance

noise. One might attribute this to the outer taps in the estimator having fewer

samples from which to estimate the true cross correlation statistics. This results

in those taps having a higher error as compared to the taps close to the zero tap

which see more samples. In this case, windowing the data appeared to reduce the

contribution of the outer taps in the filter update equation and, thus, increased

the filter performance. However, repeating the single sensor experiment using the

new statistical algorithm with the human EF still resulted in the input signal being

amplified.

The single sensor configuration is unique in that the filer relies upon an a,.-

curate estimate of the pre-stimulus noise autocorrelation statistics. In addition, the

statistics are assumed to be time-invariant. The importance of these assumptions

are that PS = Pn. Any violation of these assumptions results in Pi = P + P,k where

•P,,k represents the error in the estimate. It can be shown that W# = W + 147B

where the weight error bias, Wk, equals R-'Pe,, (13:89-90). In closing, the following

observations were noted during the experiments:

" The magnitude of the P vector from the single sensor experiment was ex-

tremely high as compared to all other test and experiments performed. In this

case, the P vector may dominant the filter update equation suggesting that

the noise variance exceeds some "threshold" of the filter's ability to see the

jitter component.

" The error in the P,, vector is expected to be higher in the outer taps which use

fewer pre-stimulus data points. Given the magnitude of the P" vector for the

single sensor experiment, the noise in the outer taps may still be significant

even with windowing the pre-stimulus data vector.
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Any time-variance in the noise statistics in the post-stimulus region will corrupt

the filter solution as the P vector is not time-varying. The ideal estimator

would continually update even in the post-stimulus region.
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4.7 Chapter Summary

This chapter performed three experiments to estimate the human EF signal

from human EP. The three filter configurations used were

1. Two Sensor TSAFLMS

2. Two Sensor TSAFmp,

3. Single Sensor TSAFmp,

The results from these experiments were data files which contained the 80 output

vectors from each of the experiments. Unfortunately, there are no human EF signals

which are noiseless to compare with the filter output. Therefore, the ensemble aver-

age of the desired signal, MEG.PRN, was included in the plots to show the deviation

of the output signal about the mean. In addition, the input signal was included to

show the reader what the signal looked like before filtering.

Based on the results from Chapter 3, one might reasonably assume that the

TSAFmpa would produce a more accurate estimate due to the bias influence of the

cross correlation between the MEG and EEG noise. A qualitative assessment of the

TSAFmpa performance using the human EF is not possible because the underlying

signal is not known.

Finally, the single sensor TSAFmpa experiment using human EF resulted in

an output signal which was apparently amplified. This indicated the filter solution

was unacceptable and was further analyzed by testing the single sensor TSAFp.

with simulated EF and high variance noise. The results from the test indicated that

windowing the pre-stimulus data improved the filter performance but did not resolve

the amplification problem. E.sentially, this anomaly is left for future research with

the cause attributed to three hypothesists:
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1, The magnitude of the P, vector resulting from the autocorrelation of the MEG

pre-stimulus noise dominates the filter update equation. This exceeds some

"'threshold" of the filter's ability to see the jitter component.

2. While windowing improved the filter performance, there may still be consid-

erable error contained in the outer taps of the Pn, vector due to the limited

number of data points these taps use.

3. The noise in the post-stimulus region may, in fact, be slightly time-varying.

This would corrupt the P estimate as the statistics are assumed to be time-

invariant.
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V. Conclusions and Recommendations

5.1 Conclusions

This thesis was a direct application of the Ferrara TSAF using the LMS algo-

rithm and the Williams mPa. The filters were used to estimate human EF signals

using human EP. The conclusions from this research effort are the following:

The input signals to the filter can be modeled as the sum of three uncorrelated

components, the jitter, mean, and noise. This was developed in Chapter 2

using the simulated EP data which contained human EEG noise. This result

greatly enhanced the understanding of the signal processing performed by the

TSAF filters.

# Based on a limited data set, cross correlation was discovered between the hu-

man EEG and human EEG noise components. This was based on a statistical

analysis of thc pre-stimulus noise contained in the human data files obtained

from AAMRL. This prompted a series of test which compared the TSAFnpa

performance to the TSA-I.S when there is cross correlation between the noise

components.

a The TSAFmp. produced a better estimate of the desired signal over the TSAFMS

when the input and desired signals contained correlated noise components. The

conclusion was based on using a forward model to create simulated EF from

the simulated EP data. In addition, computer generated noise files were used

which contained cro. co:relation.

Other significant observations were made during the testing phase of the filters

resulting in modifications to the code are the following:

9 The bias weight in the first stage passed adaptation noise into the filter struc-

ture which caused some of the filters to diverge from the desired solution. The
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filter adaptation was delayed to allow the bias weight to work on the first

20 vectors before the TSAF adaptation started. This reduced the adaptation

noise passed to the filter allowing all the TSAF filters to converge to the desired

solution.

The Ilk update algorithm was modified to calculate the gain constant based

on an instantaneous estimate of the signal energy present at the filter input.

The original algorithm used a leaky integrator stage which captured any noise

passed to it from the estimate of the signal energy. This noise was then used in

future updates of itk which caused the gain constant to decrease in magnitude

slowing the convergence of the filter. The instantaneous update appeared to

improve the convergence speed to the desired solution.

5.2 Recommendations

There are several recommendations which might make a reasonable thesis topic

in themselves or good topics to include in related research. The recommendations

are as follows:

1. This thesis analyzed a limited sample of human EEG and MEG data noting

there was cross correlation between the noise components. One might further

investigate these findings by analyzing the MEG and EEG noise from a much

larger sample set and using different subjects and/or different placement of the

sensors.

2. This thesis used simulated EF and EP buried in simulated EEG and MEG

noise. A follow on thesis should further test the filter using simulated EF and

EP buried in human EEG and human MEG. The purpose being to more closely

simulate the signal-to-noise and correlation relationships between the human

signals and noise.
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3. The performance of the single sensor TSAFpa could be quantified in terms of

MSE as a function of the signal-to-noise ratio. The purpose being to determine

if the single sensor TSAFmpa exhibits a threshold affect as the magnitude of

the P, vector components increase. One might also investigate using different

windowing techniques in the P,, estimator and study the affects of increasing

the number of pre-stimulus data points. For example, generate a 15 tap P,

vector using 30 to 40 pre-stimulu- samples instead of the 20 used in this thesis.

4. While signal-to-noise is one performance criteria, another is convergence speed.

Therefore, a follow on study should investigate Figures 3.8 and 3.9 to gain ad-

ditional insight into the effects of the Counter performance versus the leaky

integrator. Given the filter structure is composed of several components which

all interact, additional analysis of the two stage filter might reveal other en-

hancements to speed the convergence.

5. Along the lines of the previous item, the code for this program could easily

be optimized to increase the execution speed. In addition, a user interface

would be a nice to have as well. Presently, the code is modified for different

configurations and then re-compiled. The program is initialized with variables

which could easily be set from within a user interface. Finally, with the speed

of PC's increasing, a graphic driver displaying the instantaneous mean-square

error would allow monitoring the filter performance during the program exe-

cution.

6. Finally, one might investigate using a neural network to improve the filter

performance by selecting the optimum filter solution from a set of solutions for

each instant in time.
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Appendix A. Definition of Statistics

A.1 Introduction

The purpose of this appendix is to define terms and describe the statistical

calculations referenced through out this thesis. The terms defined are: mean, mean-

square, ensemble average, and ensemble mean-square.

A.2 Definitions

Let Yk be a data vector with N data points where k is the time index. The

vector represents data points observed from a single experiment or random process

over time. The time average or mean of Y is defined as

= E yk (A.1)

k=1

It is important to note that if N is finite, Equation A.1 is only an estimate of the

mean. However, for the purpose of this thesis, the number of data points is considered

to be large enough such that:

- N

Y C Y ZYk (A.2)IVk=1

Continuing on and using the same data vector, the mean-square of y is defined as

= 1 (A.3)
k=l

Both of these are commonly used in calculating the statistics of time sequenced data

(1:3-5). The point to make is that the statistics were calculated over time or "along"

the process. We are now ready to define the ensemble average which is calculated

"across" the process.
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The experiment is now repeated M times still making N observations during

each experiment. The observations are collected and stored in the data array y,,k

which now has M rows and N columns. k is still the time (column) index and j is the

vector (row) index. This data array then represents the ensemble of the experiment

(7:114-115). When dealing with ensembles, the statistics of interest are the ensemble

average and the ensemble mean-square. These are calculated "across" the process

at fixed points in time. Therefor, the ensemble average is calculated by columns in

the data array or the ensemble average is

Al
E[yk] = 1 Yjk (A.4)

j--1

where k = 12, .. .N and indicates that the ensemble average is time sequenced and

with N values as a result of the calculation. Note that the averaging is done by

columns. In this thesis, the resulting values are represented in vector notation.

Therefor, the N results from Equation A.4 can be written as

E[Y] = [E[yi] E[y2]... E[YNI] T  (A.5)

where Y is a vector with N data points. The ensemble mean-square is then

E[y] = (A.6)

The notation in this thesis uses E[yk] as the ensemble average and E[y2] as the

ensemble mean square or variance of the kh column in the data ensemble.
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Appendix B. Bias Weight Solution

B.1 Introduction

This Appendix presents the derivation of the equation for the TSAF optimum

weight solution with the bias weight. This derivation relies upon the following iden-

tity:
tt:A B A-  + A-'BV-ICA - 1 -A-'BV - 1

C D -V-'CA - 1  V- 1

where V = (D - CA-IB) and the determinants of A and V must be non-zero. The

proof of this identity can be found in (13:121-123). Only the result is used here.

B.2 Optimum Weight Vector Solution

The derivation begins with the augmented optimum weight vector in Equation

2.27 which is rewritten below:

MT  md,k (B.2)

Wau'gAk= Rk Pk(

Applying the identity in Equation B.1 to Equation B.2, the optimum weight vector

solution is simplified as follows:

1FMk1 (-1-IMTF[1)[md'k]

W.*9,k = [ 'ITMl)(1lk~ ~ J (B.3)w:gk= -F-'Mkl -  ; Pk

where

A = 1 (B.4)

B= M[ (B.5)

C = Mk (B.6)
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D Rk (B.7)

Fk is the autocorrelation matrix of the input signal with the mean removed. One

can derive Fk from the definition of I/ which results in

V = D -CA- 1 B

= Rk-M k

= RLk- MkT

=1',, (B.8)

Performing the vector multiplication and grouping terms:

w;U.9k = md,k + Md,kM ?.'~k Mjk - MkT'F 1-p
L -md,k'Mk +Fl~1 Pk .

[md,k + MkTF 1 (Md,kAlk - Pk) ](9
I. FA?(-md,0A'k + Pk) J

In order to proceed, the equation for the cross correlation ve.ctor must be

expanded and written in terms of the individual signal components. This is presented

below:

Pk = E[dkXk]

= E[dk(Mk + Qk +Nk)]

= E[dkMk] + E[dkQk] + E[dk~k]

= Jdk)l!.llvkJ + E~dkQkl + L5LakIL.E[JkJ

= Md~kMk + E [dkQkI (B.10)

The last line is obtained by recalling that the noise component of the input signal

is zero mean and uncorrelated with the desired signal. In addition, the mean of
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the input signal is uncorrelated with the desired signal and the expectation of the

product equals the product of the expectations. Finally, Equation B.10 is further

reduced by writing dk in terms of its components,

Pk = md,kMk + E[dkQk]

= md,kMk" + E[(Md,k + qdk + nd,k)Qk)]

= md,kMk + E[md,kQkl] + E[qd,kQk] + E[nd,kQk]

= md,kMk + E[md,klE[Qkl + Z[qd,kQkl] + E[nd,kIE[Qk]

= md,kMk + E[qd,kQk]

= md,kMk" + Qd,k (B.11)

where Qdk = E[qd,kQk] and is the expected value of the correlated jitter or random

components of the input signal and the desired signal.

Now substituting this result into Equation B.9 for the quantities in the paren-

thesis, the final form of the optimum weight vector solution is obtained:

W wb,k md,k - Mkj . I Qd,k (B.12)Wik IC P-Q d,k

This is the solution presented in Chapter 2.
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Appendix C. Optimum Weight Vector Solution.

C.1 Introduction.

This appendix derives the filter solutions for the case when the input and

desired signal are the same (i.e. x. = dk). The solutions are developed using a

three tap filter for three different cases: causal filter without noise in the filter input,

non-causal filter without noise in the filter input, and nn-causai with noise added to

the filter input. In general, a causal filter processes only current signal values and/or

past. Often the terms realizable and causal go hand in hand (4:38). A non-causal

filter is a filter which not only processes current and/or past signal values, but, future

values as well (5:41). For this thesis, the entire event has already occurred and the

sample points are stored in a data vector, therefore, future values are the next sample

point(s) in the vector relative to where "now" is. For the" TSAFLMS and TSAFmpG

filters, "now" is the zero or center tap of the filter, wo.

C.1.1 Causal Filter Solution. Given a three tap causal filter, one uses the

definition of the autocorrelation matrix and cross coiielation vector establish the

following optimum weight solution:

W * R--P

E[xoxo] E[xoxc.] E[XOa. 2] E[doxo]

[E[lxo] E[x_.x_.] E[xX- 2 ] E[dox_1] (
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To simplify the development of the solution, the following matrix and vector nota-

tions are presented:

a b c a

W* = b d e b (C.2)

C e f j c

where

a = E[xoxo] (C.3)

b = E[xox _I (C.4)

c = E[xox 2] (C.5)

d = E[x_,xl] (C.6)

e = [x,X2 (C.7)
f = E[x_2x_ 21 (C.8)

An important note is that the order of the product within the expected value operator

is not important or E[xox-1] = E[x-ixo]. In addition, the input and desired signal

are the same and do = xo which results in the cross correlation vector containing the

same values as the top row of the R matrix. The next step is to invert the R matrix

and perform the vector product which produces the following:

(df - ) (ce - bf) (be- cd) a

WS D f (ce-bf) (af-c 2) (bc-ae) bDet R

(be-cd) (bc-ae) (ad-b2) c

adf - ae2 +bce - b2f +bce - cOd

D- R ace- abf + abf - bc2 + bc2 - ace
Det[

abe - acd + b2c - abe + acd - b2 J
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Det R

0Det R
0

= 0 (C.9)

0

where Det R = adf - ae2 + bce - b2f + bce - c2d. The inve;rsion assumes the

determinant of R is non-zero. This is not a surprising result given the input and

desired signal are the same because the best the filter can do, in this case, is model

a straight wire and pass the input signal without any alterations. This is the result

for a causal filter. The derivation for a non-casual filter now follows.

C.1.2 Non-Causal Filter Solution. The non-causal filter has weights which

see past and future values. For this thesis, the non-causal filter is always symmetric

about the center weight, Wok. This development will again use a three tap filter

which means that the filter uses only one future input. The input vector is then

X = [x x x..]T and the optimum weight solution is written slightly different from

Equation B.1 or

14* = R-P
-- 1

E[xixl] E[xixo] E[xlx_.] E[doxi]

Eixoxj] E[xoxo] E[xoxiI E[doxo]

E[xIxl] E[xixo] E[xi_ 1 ] [ E[dox_( 0
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Again, do = x0 and one to one substitutions are made to simplify the expansion of

the matrix inverse. Equation C.10 then becomes the following:

[a b c b

w = b d d.11)

c C f j e

where

a = EfxixiI (C.12)

b = E[xlxo] (C.13)

c = E[xX.-] (C.14)

d = E[ xoxo] (c.15)

= E[xox_,I (c.16)

f = E[X_,x.,] (C.17)

The important difference to note is the change in the P vector. To ensure the reader

sees the time shift from using a non-causal filter, the substitutions used with the P

vector are presented with the input signal equal to the desired signal:

[doi ] [xoxi]
P = E[doxo] = [xoxo] = d (C.18)

EJox_,] E[xox_1] e

The non causal filter has shifted the input signal, L.wever, the desired signal is not

shifted and the cross correlation vector now contains the values in the second row

of the R matrix. Inverting the matrix and performing some algebra, the three tap
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non-causal solution is the following:

(df-e 2 ) (ce-bf) (be-cd) b

W* = (ce-bf) (af-c 2 ) (bc-ae) dDet R

(be - cd) (bc- ae) (ad- b2) j e j

bdf - be2 +cde - bdf + be2 -cde
1I

DeiR bce-b 2f+adf-c 2d+bce-e 2a

b2 e - bcd + bcd - ade + ade - b2e

0

et14Det R
0

0

- >1 (C.19)

0

where DET R = bce - b2f + adf - c2d + bce - e2a and is assumed to be non-zero.

This shows again that when the input and desired signal are the same, the filter

converges to a straight wire where w0 = 1 and all other taps are zero.

C.1.3 Non-Causal Filter Solution With Noise. This section derives the filter

solution for the special case where noise is added to the input signal, however, the

desired signal is noiseless or

Xk qk + nx,k (C.20)

and

dk = qk (C.21)

The mean components are absent because we have assumed that the bias weights

have perfectly estimated the mean components of the input and desired signals and

removed them. The next step uses similar substitutions as those already presented
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to write the optimum weight vector solution in terms of the autocorrelation matrix

and the cross correlation vector or

a b c E[doxi]

W* b d e E doxol (C.22)

c e f E[dox...uIj

where

a = E[xxl = E[q' + n2] (C.23)

b = E[xlxo] = E[qlqo + nino] (C.24)

C= E[xlx..i] E[qlq-l + nin- 1] (C.25)

d E[xoxo] = E[qg + n'] (C.26)

e =Elxoax..i] E[qoq-l1 + non-11 (C.27)

f = E[x-..x..] E [q?.1 + n- 1 (C.28)

The cross terms are zero because the signal components are assumed to be uncor-

related and zero mean as was showvn in Chapter 2. Therefor, the expected value

of the cross terms in the product is zero. The P vector is now written in terms of

Equations C.24, 0.26, and C.27 or

E[doxi]1

P = E[doxol

E [dox -1i

E, [qo(q, + ni)]1

BE + n1o)]

C-6



b - E[n=,on.,]

= d - E[n',o]

e- E[f ,x,-]

b - nb

= d -nd (C.29)

e - n,

The final form of the solution is obtained by performing the inverse operation on the

autocorrelation matrix and breaking the P vector into two separate vectors or

(df - e2) (ce- bf) (be - cd) ] b - nb1
DeR (ce-bf) (af-c 2 ) (bc-ae) d-7d

(be- cd) (bc- ae) (ad- b2) J e-ne

(4f-_e 2) (cce-bf) (be -cd) [b] n b

D 1 (cc- bf) (af - c2) (bc - ae) d - nd (C.30)Det R

(be- cd) (bc- ae) (ad- b2 ) e n,

Performing the vector multiplication and using the results from Equation C.19, the

previous expression is simplified to the following:

0 __ (df -e 2) (ce -bf) (be -cd) nb

W = I - DT If (ce - bf) (af - c2) (bc - ae) nd (C.31)

0 j (be-cd) (bc-ae) (ad-b 2) ne

Equation C.31 shows that the resulting weight vector will try and reduce the contri-

bution of the noise in the filtered output while enhancing the signal component.
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Appendix D. Derivation of the mPa

D.1 Introduction

This appendix develops the Williams mPa from the Widrow LMS algorithm.

The development follows that used by Williams and presents two derivations. The

first derivation shows the effects of the signal noise component in the weight solution

when a single sensor is used. The second derivation is the mPa (13).

D.2 The mPa

The derivation starts by expanding the error termAk, in the LMS algorithm

along with the filter output, Yaug,k

Wk+1 = Wk + 2iekX1.

= Wk- + 2jt(dk - Yaug,k)Xk

= 1Wk + 21t(qd,k + ?md,k + nd,k - Yaug,k)Xk

- Wk + 2li(qd.k + nd,k + Md,k - (X k Wk + W2bk))Xk

S 147k + 2JL((qd,k + nd,l.)Xk - xTwkXk) (D.1)

The last line was obtained by assuming that the second bias weight has ideally

estimated the mean component of the desired signal (md,k = W2b,k) and removed it

from the update equation. Therefor, in using the signal model presented in Chapter

2, dk = qd,k + ?d,k and is zero mean (13:86). This also applies to the input signal

as the bias weight in the first stage has removed the mean component of the input

signal. Now as k approaches infinity, the filter is assumed to reach a point in time

where E[Wk+l - Wk] equals the zero vector. Subtracting Wk from both sides and

applying the expected value operator to Equation D.1 results in the following:

,,[Wk+, - Wk] = 2(LE[(qdk n nd,k)Xkl] - E[xWkXk]
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0 = E[(qd,k + nd,k)(Qk + Nk)]- E[(Qk + Nk)(Qk +- N7')]Wk

0 = E[qd,kQk] + E[nd,kNk] - (E[QkQ' ] + E[NkNT'])wk

0 = Pq,k + P,,,k-(Rq + R,)kW (D.2)

The cross product terms are zero because the signal components are assumed un-

correlated and zero mean. The second line was obtain by noting that X'Wk is a

scalar, therefor, (XTWk)Xk = Xk(XTWk). In addition, the Wk was removed from

the expected value assuming the filter has settled to a solution and the weight vector

is not changing. Solving Equation D.2 for the weight vector yields:

= (Rq + R.)k'(Pq,k + P.,k)

= (Rq + R)'Pqk+(Rq +R)kPnk

= W + W (D.3)

Williams states that " ... any correlation between the noise components biases the

weight solution away from the desired solution, Wk*, by the amount Wk "(13:85).

He further points out that for the single sensor case where the input signal is also

the desired signal, the minimum MSE is achieved when the zero tap is one and all

the other taps are zero (13:85). The filter then acts like a straight wire as was shown

in Appendix D. Therefor, the LMS algorithm must be modified to prevent the filter

from just passing the input signal along with the noise.

The mPa is obtained by noting that in a single sensor configuration the desired

noise component is also the input noise component. Therefor, if an instantaneous

estimation of the noise, hd,k, was known, the estimate could be subtracted from

the actual noise component in the filter update. This estimate is incorporated into

Equation D.1 and reduced as follows:

14k+1 = Wk + 21[(qd,k + nd,k - fid,k)Xk - XkWkXk]
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=Wk - 21L(qd,k + nd,k - Xk Wk)Xk - 2yH~,kXk

= Wk + 21pCkXk - 2 1,fhdkXk (D.4)

For the ideal case where the estimate equals the actual noise component, nd,k = fal,k,

the noise term present at the start of Equation D.2 will go to zero and the bias term

in Equation D.3 will then go to zero. This further means that the input signal and

desired signal are perfectly correlated as shown below:

dk = qk+nk-nk

= qk (D.5)

Williams points out that the filter must have perfect knowledge of the instantaneous

value of the noise component at each point in time. It is very unlikely that an

instantaneous knowledge is achievable (13:86). However, an estimate of the average

value might be acceptable. For the mPa, the average knowledge is E[ndkXk] and

the estimate is then E[iid,kXk]. Continuing with Equation D.4 and substituting in

the estimate of the average produces the following:

W,,+, = Wk + 21tc;.Xk - 2lAhd,kXk

= Wk + 2#6kXk - 21E[hd,kXk]

= Wk + 21i,,Xk - 2IP,,k (D.6)

P!,,k is the cross correlation noise vector which is dependent on time as seen by the

k index and contains an estimate of the noise statistics. If the noise is assumed to

be stationary, the k index can be dropped and the nPa algorithm is then

Wk. = 1471, + 2 MCkXk - 2y/, (D.7)

Equation E.7 is the algorithm implemented in this thesis. The statistics for the P,,
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vector are estimated from pre-stimulus noise which is detected and recorded prior

to the application of the stimulus (13:89). Using the assumption that the noise is

stationary, the P, vector is not a function of time and is identical for all 50 time-

sequenced filters in the TSAF.
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Appendix E. Computer Generated Data Files

E.1 Introduction

The purpose of this appendix is to show how the computer generated data files

were created. The routines to generate the files were implemented in Turbo Pascal.

The files discussed here are the following:

* AWGNO

e AWGN1

* SIM.EEG

* SIM.MEG

* NOISE.MPA

e NOISE2.PRN

E.2 Additive White Gaussian Noise.

Figure E.1 is a block diagram of the AWGN generator used to create AWGNo.

The routine generates a signal number according to the algorithm shown. N is

the number of times the random number generator is called. The summing routine

collects N samples and outputs a single number. The entire process is repeated for

each point in the data ensemble. The AWGN file contained 100 data vectors with

50 sample points in each vector. Therefor, the AWGN generator was called 5000

times. The resulting data file was zero mean and unity variance. In addition, the

data file is uncorrelated which is a property of AWGN.

The AWGN file was generated from AWGNo as defined in Equation E.1. The

routine essentially flips the data within the vectors and then reorders the vectors

in the ensemble. An alternate approach is to use a different seed for the AWGN
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Random Number Generator

AW4GN

Figure E.1. Additive White Gaussian Noise Generator: The output is a single
value. Repeated calls to this routine wvill generate an AWGN signal
with zero mean and unity variance.
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generator. However, Equation E.1 proved satisfactory.

AWGN,1j,k = AWGNoj-(M-.),,-(N-1) (E.1)

The result was that AWGNI was zero mean and unity variance and uncorrelated

with AWGNO.

E.3 Simulated EEG and MEG Noise

The noise files in this section were created with correlation and cross correla-

tion. Figure E.2 is the block diagram of the routine which generated the SIM.EEG

and SIM.MEG noise files. Each file contained 100 vectors with 70 points in each

vector. The first feedback loop spreads correlation within the incoming AWGN. The

second feedback loop then creates the cross correlation between the two files. The

0.8 value spread correlation within the file to simulate the spreading observed in the

autocorrelation of the human MEG pre-stimulus noise from Chapter 3.

E.4 NOISE.MPA and NOISE2.PRN

The NOISE.MPA file was the same file as SIM.EEG. The name was different

so as not to confuse the reader. The important characteristic of the NOISE.MPA is

the correlation within the data file which was generated to stress the P estimator.

The last noise file NOISE2.PRN was created with high variance as shown in Figure

E.3. The multiplier was used to increase the power in the signal resulting in a lower

SNR when added to the simulated EF.
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Figure E.2. Create Correlated Noise Components

SIM.MEG NOISE2.PRN

10

Figure E.3. Create High Variance Noise
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Appendix F. Program Listing and Description

F.1 Introduction.

This appendix contains the program listing for the TSAF and mPa filters. The

code is in Pascal and was created, edited, and debugged u-ing Borland Turbo Pascal

5.0. An effort was made to design a modular program to facilitate debugging and

enhance the readability. Variables and procedures were labeled with sufficient size

to describe the variable and the function of the procedure. With this in mind, the

following sections provide a brief overview of the main program loop and selected

procedures.

F.2 Main Program.

The main program is a loop which is repeated based on the number of data

vectors and the number of runs selected. The first procedure, clear-arrays-vectors,

clears all the data arrays and vectors as Pascal does not initialize these when they are

declared. The next procedure, initialize-variables, initializes all the filter parameters

which are variables within the program. A "nice to have" would be a procedure to

prompt the user to input the variables from the keyboard.

Next, the driver opens the necessary disk files for writing and reading and then

proceeds to load data into the data vectors. This program is designed to process

data in vectors while several disk files remain open during the program execution.

The input files for the signal, X., and desired signal, d,, are open during the entire

program and are only closed at termination or to at the start of a new run. The

idea behind this is that using vectors frees up a great deal of memory. In addition,

the array size is limited in Pascal which means a heap pointer is required for larger

arrays. To simplify the program, data is read in a vector at a time while the input

files remain open. This allows an unlimited number of vectors to be processed and

lets Pascal do the bookkeeping for the data pointer.
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With data loaded, the program enters a nested loop to update each of the

TSAF filters. This loop updates the output, error and gain vectors along with the

weight array. Once through, the execution begins with the loading of the next data

vector and the loop repeats. This is a simplified overview and the interested reader

is invited to peruse the program listing for additional details.

F.3 General Information.

This section presents information to needed to understand the code. First,

all the loops indexes are zero based which means they start at 0 and terminate at

N - 1 where N is the number of desired iterations. Second, the single letter integers

are used as global loop pointers. This means that a procedure uses the variable

without saving or restoring the values. Third, the three flags used in the program

are mpa-flag, singlesensor-flag, and causal-flag. An integer 1 means the flag is

set and the option selected. As an example, if causal-flag = 1, then the filter is

causal, otherwise, the filter is non-causal. Finally, there are no nested procedure calls

which means only the main program calls a procedure. This is intended to enhance

the readability of the program.

F.4 Program Listing.

This is the Turbo Pascal 5.0 listing of the TSAF and mPa program.

Program TimeSquencedAdaptiveFilter;
Uses CRT, Printer;

Var
x-input-vector,
d_i-pu.t_vcct.or,

youtput.vector,
bias-weight-vector,
bias-d-weight-vector,

e-error-vector,
pre-xinput-vector,
pre-d-input-vector,
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p..vector,
gain..mu-vector Array [0..80) of Real;

avg-eight.aray,
weight-.array Array[0. .80,0. .20) of Real;

filter-.select,
filter-size,
filter-.start,
delay,
number-.data-v.ectors,
ntunber-of-.runs,
run-.counter,
mpa.1 lag,
single..sensor-f lag,
causal-flag,
post-data-size,
pre..data-size,
data-pointer,
i,j,k Integer;

sum-error,
leakage,
gain-mu,
gain..muerror,
mis-.adjustmnent,
new-.gain-.mu,
mu..update-gain,
p..error,
temp-.var..x,
temp-var-.y .Real;

teznp-.str,
x..input..filename,
d..input..filenane,
w-.outputfilenanme,
e..output..filcname,
y-autput-filename :String;

x-nput-.file,
djinput-.file,
w-.output..file,
e..output-.file,
y..output-file Text;

------------------------------------------------------------------}
Procedure initialize-.variables;

Begin
x-nput-.filename 'd:sim..ef.prn';
d-.input-.filenaxne 'c:\tp\sig-files\sim-.efiO.prn';

F-3



w-.output..jilenane 'dwout .prn';
e..output-f.ilenane 'd:eout.prn';
v..output-filenane 'd:yout.prn';

post.data..size 50;
pre..data..size 20;
number-.data-vectors 100;
filter-size 15;
nurnber..o-runs 5;
filter-.start 20;
leakage :-1.0;

xnis-.adjustment 0.15;
mu-uapdate-gain 1.0;
causal-flag 0;
mpa-.f lag :-0;

single-sensor-j lag 0;

sum-..error .- 0;

Textbackground (blue);
Text color (yellow);

End;

-------- I-----------------------------------------------------------}

Procedure open-..nput..diskfiles;

Begin
Assign(x.input-file )x-nput-f.ilename);
Reset (x.input-file);

if single-.sensor-flag =0
Then

Begin
Ass ign(d-.input-jile ,d..input.filename);
Reset(d.input.file);

End;

End;

----------------------------------------------------------------- }

Procedure open-.output..Aisk-f.iles;

Begin

Assign(w.output..file ,w-output-.filename);
Rewrite(w-.output-file);

Assigne-.output-.file, e-output.filenane);
Rewrite(e-output-file);
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tssign(y-output-.file ,y-.outputfilename);
Rewrite(y-.output-.file);

End;

({--------------------------------------------------------------}

Procedure write-.y-vector-.todisk;

{Purpose: Write selected vector to disk. This routine assumes the file
is open for output and appends the vector to the text file.}

Begin

For i:= 0 to Cpost~data.size - 1) Do
Begin

Writeln(y-.output-.file , i, ' y-output-.vectorli));
End;

End;

---------------------------------------------------------------}
Procedure write.yeight.array-to.disk;

Label
exit.yrite.to-.disk;

Begin
If run-.counter < (number-of-runs - 1)
Then goto exit-write-to-.disk;

For j :0 to Cpost-.data-size -1) Do
Begin
For i :0 to (filter~size - )Do

writeln~w.output-.file 1weight..array[j ,iJ :0:5);
End;

exit-write-to-disk:

End;

------------------------------------------------------ ---------r
Procedure resetdisk-files;

{Purpose: Moves the fi-e pone to the start of th 44J1o*- All subsequent
reads sta-t at the beginning of the file.}

Begin
Reset Cxinputfile);
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If singlesensor.flag = 0
Then Reset(dinputfile);

End;

{-------------------------------------------------------
Procedure print.avg-weight.array;

Begin
For i := 0 to (post datasize - 1) Do

Begin
write(Lst,i,' 1);

For j := 0 to (filter-size - 1) Do
Begin

write(Lst,avg-weight-array[i,j]:7:4,' 1);
End;

Writeln(Lst);
End;

Writeln(LstChr(12));
End;

{-------------------------------------------------------

Procedure closeinput-disk-files;

Begin
Close(x.inputfile);

If single.sensor-flag = 0
Then Close(d_inputfile);

End;

-----------------------------------------------------------------}

Procedure close.output-disk-files;

Begin
Close(woutput-file);
Close(e.output.file);
Close(y-output-file);

End;

-----------------------------------------------------------------.

Procedure load.input-vectors;

Begin
For i := 0 to (postdatasize - 1) Do
Begin

ReadLn(x-input-file , temp-var-x, x-input-vector[i));
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If single-sensorflag = 0
Then ReadLn(dinput.file ,temp-var-x, d.input.vector[i])
Else d.inputvector~i] := x-inputvector[i];

End;

End;

f{----------------------------------------------------------------}

Procedure loadpre.input.vectors;

{Purpose: Load the pre-stimulus data into the appropriate vectors. If the
data files do not have pre-stimulus data, then predatasize should
be set toO !H.}

Begin
For i := 0 to (pre-datasize - 1) Do
Begin

ReadL.,(xjinputfile, temp.varx, pre-x.inputvector[ij);

If single.sensor.flag = 0

Then ReadLn(dinput-file, temp-varx, pre..inputvector[i])
Else pred-input-vector[i] := pre-x-input-vector[i];

End;

End;

f{----------------------------------------------------------------}

Procedure test-filtersize;

{Purpose: to make filter-size odd and set DELAY. Making the filter size odd
simplifies the algorithms for a non-causal filter because the filter
is symetrical about the center tap. Also,
DELAY is set to filter-size if causal, otherwise it is the number
of taps to either side of the center tap.}

Begin
temp-varx := Frac(filter-size/2);

If tempvar.x = 0
Then filter-size filter-size + 1;

If causal-flag I
Then delay f ilter-size - 1
Else delay (filter-size - i) Div 2;

End;

----------------------------------------------------------
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Procedure update-.screen;

Begin
If data-.pointer = 0 Then
Begin

CirS cr;
GotoXY(i,2);
Writeln(' Filter Size: ',filter-.size);
Writeln( 'Number of Runs: ',nuniber-.oruiis);
Writeln(' Causal Flag: ',causal-flag);
Writeln(' mPa Flag: ',mpa.f lag);
WritelnC' Misadjustment: ',mis..adjustment:0:3);

End;

GotoXYC1,8);
Write(' Working on Run 4*: ','<',run-counter + 1,'> ')
GotoXY(i ,10);
WriteC'Processing Data Vector: ','<',data.pointer,'> ');
GotoXY( , 12);
Write(' Variance Error: ','<',suin-error:0:4,'>');

End;
--------------------------------------------------------------- }

Procedure update.screen-.2;
Begin

Textcolor~yellow+bl ink);
GotoXYC1,8);
Write(C' Filtering');
Textcolor(yellow);
GotoXY(1,10);
WriteC'Processing Data Vector: ','<',data-.pointer,'> ');

End;

{-------------Procedures for gain-.mu-.vector-----------

Procedure update.gain.mu..vector;

Begin
gain-.mu-.vector[filter-selectj := mu-.update-.gain * new-gain-mu;

End;

----------------------------------------------------------------- }

Procedure calculate~new-gain-mu;

{Purpose : To calculate the gain constant used in the weight updates. This
procedure scales the gain constant using the input signal energy
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and the number of filter taps.}

Var
variance Raal;

Label
Skip-.New-.Gain-.Loop;

Begin
variance 0;

For i :=0 to (filter.size - 1) Do
Begin

If Cfilter-.select - delay + i < 0)
OX
Cfilter-.select - delay + i > ( post-data-.size I )

Then
GoTo Skip-New-.Gain-.Loop;

variance :=variance +
Sqr~x-.input-.vector~filter-.select -delay + i));

Skip-.New-.Gain-.Loop:
End;

variance :=variance / filter-size;

new-.gain-.mu :=(mis..adjustment)I
(filter-.size*(variance + 0.O01)*(run-.counter + 1);

End;

-~~~Procedure for bias-weight.update-----------

Procedure update.bias..weight..vectors;

{Purpose: Estimate the mean of the input signal and desired. The weight
of the error is decreased with each data vector. If the filter is
doing multiple runs, then the bias weight is not updated after the
first run and remains fixed for all additional runs.}

Begin

if run-.counter = 0
Then

For i :=0 to Cpost..data..size - 1) Do
Begin

bias-.weight-.vector~i) : bias-.weight-.vector~i) +
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(2. 0 *0. 5/
(data-pointer + 1))*
Cx-.input-vector Ci)
bias-weight.vector i));

bias..d-weight..vector Ci) bias.d..weight-.vector Ci) +
(2.0 * 0.5 /
(data-.pointer + 1))*
Cd..input-..ector Ci)-
bias-.d.weight..vector i));

End;
End;

----------------------------------------------------------------- }
Procedure remove-.bias..from.input..vectors;

Begin
For i :=0 to Cpost-.data..size - 1) Do
Begin

x.Jinput-.vector~i) : x-input-.vector~i)
bias-.weight..vector Ci);

d-nput-.vector Ci) d-nput.vcctor Ci)
bias-.d..weight-.vector i);

End;
End;

-~~~Procedures for filter updates-------------

Procedure update-.y..output-.vector;

Var
sum-.var :Real;

Label end..loop;

Begin
sumiyar :=0;

For i:= 0 to (filter.size -1) Do
Begin

If (filter-.select - delay +- i < 0)
or
(filter-.select - delay + i > (post..data-size -1))

Then Goto End-Loop;

sulnvar := sum-.var +
weight-.array~filter-.select, i)
x-input-.vector~filter-select - delay + i];

End-.Loop:
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End;

y..output..vector Efilter-.select] suxn-var;

End;

----------------------------------------------------------------- }
Procedure add-.bias-.to..y..ector;

Begin
For i :=0 to (post-.data..size -1) Do
y..output-.vector~i) :=y-output-vector~i) +

bias.A..weight-.vector~i];
End;

----------------------------------------------------------------- }

Procedure update.e..error..yector;

Begin
e-.error-.vector(filter-select3 : d-.input-vector Efilter-.select]

y-output-.vector Efilter.select);
End;

---------------------------------------------------------------- }
Procedure sum-.error-.vector;

Begin
sum-.error :=0;

For i:= 0 to (post-.data~size - 1) Do
sum-error := sum-error + Sqr(e..error-vector~i)) / post-.data-.size;

Writeln(e.output-.file, sum~error);

End;
f{----------------------------------------------------------------}

Procedure update-.weight-.axray;

Label Skip-.Weight-.Update;

Begin

For i :=0 to Cfilter.size - 1) Do
Begin

If (f ilter-.select - delay + i < 0)
or
(f ilter-.select - delay + i > Cpost..data-size -1))
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Then Goto Skip-Weight-Updaxte;

weight..array[filter..select4Jl leakage w eight-.axrayr ilter. relect,il +
2 * gain...muvector~filtrse'ectI
e-error.v ctor ((ilter.select]
x-input-vectorElil-ter-select - delay + i);,

if mpa-Ilag 1
Then
wecigtarraEfilter-.select,i) weight-.axraylilter .select~iI

2 * gain-mu-vector~filter-select)

Skip-Weight-Update:

End;

End;

--------------------------------------------------------------------- }
Procedure ciear..arrays~vectors;

Begin
For i :=0 to 79 Do
Begin

t.Anput-vector~il 0;
d..input-.vectorl 0;
y..ouzput-vectortiJ 0;
e-error-vectorii) 0;

pre-.x..input..vector[.4) 0;
pre-d-input..vectorti) 0;
p-uector~i) 0;
bias-yweight-.vectorfi) 0;
bias-d-eightvectorCi) 0;

End;

For i :=0 to 79 Do
Begin

For j :=0 to 20 Do
Begin

avg-.weight..a'tray~i,jJ 0;
weigt.axzayfi, j] 0;

End;
End;

Enhd;
{--------------------------------------------------------------

Procedure update.p..ect,>r;
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Var
time-.index,
tap Integer;

Label Skip-.pre..vectorupdate,
mpa-.notselected;

Begin
If (mpa-flag 0)

(run-.counter > 0)

Then Goto mpa-~not-.selected;

For i :=0 to CPp-data-.size -1) Do
Begin

For tap :=0 to Cfilter..size - 1) Do
Begin

If (tap -delay+ i<O0)
or
(tap - delay + i > pre-ata-.size -1)

Then Goto Skip-preyector.update;

p-.vector~tap) p-vector~tap] +
(pre-x-.input-.vector[tap - delay + i]
pre...&input..yector[iJ)I
(number.data..yectors *pre..data-size);

Skip-pre-.vector-.update:
End;

End;

mpa..not-.selected:
End;

----------------------------------------------------------------- }
Procedure lreeze..weihtB;

Begin
For i :=0 to (post~data.size - 1) Do

BgnFor 0 to (filt.er~size - 1) Do
veight-.array[i ,j] avg-weight-array~i jJ;

End;
End-,
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Procedure do..avg..weight-.axray;

Label
exit.avg;

Begin
If run-.counter < Cnuiber-of..runs - 1)
Then goto exit-avg;

if data-.pointer 1
Then Begin

textcolor (yellow+blirnk);
GotoXY(40,2);
writelnC Averaging Weights');
textcolor~yellou);

End;

For i :=0 to (post.data..size - 1) Do
Begin

For J : 0 to Cfilter.size - 1) Do

avg-.weight-array[i,j) : avg-.weight-.array~i,j] +
(2.O)*CO.5)/Cdata.pointer + 1)*
(weight-.array[i,j] -

avg..yeight-.array Li, j));
End;

Exit.avg:
End;

------------------------------------------------------------------ }
Procedure reset..filter..start;

{Purpose: filter-.start will turn the filter on after the data-pointer has
exceed the set value of filter-.start. This allows the bias weight
vector to get a jump start on the input data before the filter. This
reduces the noise passed to the filter from the bias weight. After
the filter is started, this routine clears filter-start so the filter
is on continuously.}

Begin
filter~start :=0;

End;

<<<<<<<<<<<<<<<<<<< ain-Program >>>>>>>>>>>>>>>

Begin
ClrScr;
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initialize-.variables;
clear-arrays-.vectors;
test-fjilter-size;
open-.input-disk-files;
open-.output-.disk-files;

For run..counter :=0 to (number..o-runs - 1) Do
Begin

reset-disk-files;

For data-pointer :=0 to (nujnber-.data...vectors -1) Do
Begin

load-.pre-.input-.vectors;
load-input-.vectors;

update-.screen;
update-p.vector;
update-bias-weight-vectors;
rernove-.bias..from..input..ectors;

If data-.pointer >= filter-.start
Then

For filter-.select :=0 to (post-.data-.size -1) Do
Begin

update-y..output-vector;
update-.e..error-.vector;

update-.gain-.mu-.vector;
update.yeight.axray;
reset-filter-.start;

End;

do..avg..yeight-.array;
sum-.error-.vector;

End;

End;

-===========Freeze Weights and Filter- }=======

freeze-.weights;
reset-.disk-f.iles;
C r cr;

For data-.pointer :=0 to (number-.data.vectors - 1) Do
Begin

loadpre-input-.vectors3;
load-.input-.vectors;
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remove-bias-. .input-.vectors;

For filter-selec. : 0 to Cpost-.data~size -1) Do
Begin

update-y-output.yector;
End;

update-.screen-2;
add.bias-.to-.y-.vector;
write-y-vector-.to-disk;

End,

writeweight-arrayto-disk;
{print-avg-..eight-.array ;

close-.input-disk-files;
close-.outputdisk-files;

End.
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